Whisker-Related Neuronal Patterns Fail to Develop in the Trigeminal Brainstem Nuclei of NMDAR1 Knockout Mice

Yuqing Li, Reha S. Erzurumlu, Chong Chen, Sonal Jha, and Susumu Tonegawa
Howard Hughes Medical Institute at the Center for Cancer Research and Department of Biology Massachusetts Institute of Technology Cambridge, Massachusetts 02139
Department of Brain and Cognitive Sciences Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Summary

Sensory pathways of the brain generally develop from crudely wired networks to precisely organized systems. Several studies have implicated neural activity-dependent mechanisms, including N-methyl-D-aspartate (NMDA) receptors, in this refinement process. We applied the gene targeting to the NMDAR1 gene and created a mutant mouse that lacks functional NMDA receptors. The development of whisker-related patterns in the trigeminal nuclei of the mutant mice and their normal littermates was compared. We show that in the mutant mice pathfinding, initial targeting, and crude topographic projection of trigeminal axons in the brainstem are unaffected, but that whisker-specific patches fail to form. Our results provide a direct demonstration of the involvement of the NMDA receptor in the formation of periphery-related neural patterns in the mammalian brain.

Introduction

In most sensory systems, the periphery is mapped in a topographic fashion onto multiple cell groups in the brain. Studies of the mechanisms involved in the development of such maps have focused on the visual system, and have implicated a key role for NMDA receptor-mediated activity in the refinement of topographic maps. Thus, N-methyl-D-aspartate (NMDA) receptors have been implicated in the formation of eye-specific stripes in the frog tectum (Cline et al., 1987), topographic segregation of retinocellular afferent areas in the rat (Simon et al., 1992), the formation of so-called Cn and Coff sublaminae in ferret lateral geniculate nucleus (Hahm et al., 1991), and the plasticity of ocular dominance columns in the cat visual cortex (Kleinschmidt et al., 1987; Bear et al., 1990). The prevailing hypothesis states that correlated activity in afferents that converge on specific neurons results in depolarization of the postsynaptic membrane via non-NMDA receptors and removal of the magnesium block on NMDA receptors. This allows the glutamate released by subsequent action potentials to open the NMDA receptor channel; Ca++ enters into the postsynaptic cell, and triggers the activation of second messenger systems. The resulting cascade of events succeeds (via unknown mechanisms) in providing feedback to the presynaptic fibers, leading to consolidation of synaptic connections associated with fibers that fire in synchrony. In contrast, connections made by axons that do not fire in synchrony are weakened by virtue of their inability to activate the NMDA receptors and their failure to trigger the subsequent cascade of events in postsynaptic cells (for reviews see Constantine-Paton et al., 1990; Shatz, 1990).

The whisker-to-barrel system of common laboratory rodents is highly suitable for the study of mechanisms underlying sensory map formation. Tactile hairs (whiskers and sinus hairs) on the snout are arranged in a discrete array and collectively form a unique sense organ that is important for the exploratory behavior of the animal. Peripheral and central processes of the trigeminal ganglion connect the whisker pad to the brain. Central axon arbors of trigeminal ganglion cells and their postsynaptic target neurons replicate the whisker pattern in three distinct nuclei of the brainstem trigeminal complex (BSTC). The neuronal pattern is first established in the brainstem, which then provides a template for whisker-related patterns seen in the dorsal thalamus and in the primary somatosensory cortex or barrel cortex (schematized in Figure 1; also reviewed by Woolsey, 1990; Jha, and Erzurumlu, 1992).

The role of activity, NMDA receptors, or both in the development of the whisker-to-barrel system has been studied using activity blockers, such as TTX or AP5, applied either to the branch of the trigeminal nerve that innervates the whiskers (Henderson et al., 1992) or directly to the barrel cortex in newborn rats (Chiaia et al., 1992c; Schagger et al., 1993). Although lesions of the sensory periphery dramatically alter whisker-related patterns in the brain within a few days of birth (Belford and Killackey, 1980; Jeanmonod et al., 1981; Durham and Woolsey, 1984), activity blockade experiments failed to prevent the emergence of these patterns. In addition, the low levels of spontaneous activity in the developing trigeminal system (Chiaia et al., 1993) have led to the suggestion that the development of whisker-related patterns may be established independently of activity (Chiaia et al., 1992c, 1993; Henderson et al., 1992, 1993).

At least five subunits of NMDA receptors have been identified. Of these, the R1 subunit is essential for NMDA receptor activity (reviewed by Nakahishi, 1992). As a first step toward the genetic analysis of activity-dependent development and plasticity of sensory maps in the mammalian brain, we have used so called reverse genetics to selectively knock out (reviewed by Capeschi, 1989) the NMDAR1 subunit of the NMDA receptor. To reexamine the role of NMDA receptor-mediated activity in the establishment of neural patterns in the brainstem, those areas of the trigeminal nuclei that express whisker-specific patterns were compared in mutant and control animals. Our results show that in the knockout animals, although central targeting and topographic projection of the trigeminal afferents appear to be normal and postsynaptic neurons are responsive to stimulation of primary trigeminal afferents,
whisker-specific neural patterns fail to develop in the absence of the NMDA receptor. These results lead us to challenge the view that whisker-related patterns are formed independent of neural activity.

Results

Generation of NMDAR1-Mutant Mice

Southern blot analysis of mouse genomic DNA with a DNA probe (encoding a sequence of about 100 amino acids of NMDAR1 polypeptide chain) detected only one band in each lane (BamHI, 1.1 kb; EcoRI, 19 kb; EcoRV, 5.4 kb; and HindIII, 15.4 kb), suggesting that NMDAR1 gene is a single copy gene in the mouse genome. The NMDAR1 targeting vector (Figure 2A) has a 2.5 kb homologous sequence on the 5' side and a 0.3 kb sequence on the 3' side. Upon homologous recombination, this construct removed a 2.4 kb region encoding 338 amino acids, including four transmembrane domains. The deleted region was replaced by a neomycin-resistance (neo) gene controlled by the phosphoglycerate kinase-1 (pgk) promoter. Clones resistant to G418 were screened for the desired homologous recombination event by Southern blotting. Blots were hybridized with a 3' flanking probe and a 5' internal probe. Of 251 clones analyzed, 8 carried the expected mutation. The results of one targeted clone and a wild-type control are shown in Figure 2B.

Embryonic stem (ES) cells of the targeted clones were injected into blastocysts, which were then implanted into foster mothers (Bradley, 1987). Chimeric animals from the first four clones injected were mated with C57BL/6 mice to test germline transmission. They all transmitted the mutation to their offspring. Heterozygous animals (F1) were bred to produce homozygous mutants (F2). Later, heterozygous animals of different inbred backgrounds were crossed to produce littermates (hybrid animals) for studies of the whisker-barrel system.

NMDAR1-Deficient Mice Die after Birth

Out of 177 F2 animals genotyped by Southern blot analysis at 3–4 weeks of age, 60 were found to be wild-type animals and the rest were heterozygous animals, indicating that the NMDAR1 deficiency is lethal. To determine the exact time when the homozygotes fail to survive, we analyzed mutants at various ages during embryonic and neonatal development, between embryonic day (E) 13 and P0 (E0, day of plug; P0, day of birth).

Until P0, the ratio of wild-type:homozygotes is 25:41:22, close to 1:2:1; thus, the mutation does not result in embryonic fatality. However, about 10–20 hr after birth, the homozygotes are either thrown out of the nest unattended or are dead inside the nest. Visual inspection of normal (wild-type and heterozygous) newborn pups and homozygous pups showed that the mutant animals do not have milk in their stomachs, most likely owing to problems with their suckling reflexes. Moreover, the mutant animals are severely ataxic and cannot support their body weight on their hindlimbs.

The skin of the newborn mutant animals is flushed and has a reddish coloration, much like their wild-type littermates; thus, their cardiovascular and respiratory systems are functional at least soon after birth. No abnormality was detected in the electrocardiographic pattern or the respiratory rhythm of newborn mutant mice (X. Li, Y. L., C.-S. Poon, and S. T., unpublished data). However, increased apnea is observed within several hours of birth and cyanosis appears shortly before death (X. Li, Y. L., C.-S. Poon, and S. T., unpublished data). We interpret
these observations to mean that respiratory failure contributes to mutant animal fatality. At the time of birth, the mutant animals are responsive to hypercapnia: respiration is increased in frequency and in depth at high concentration of CO2, which demonstrates that the respiratory control in response to CO2 levels is intact in these animals (X. Li, Y. L., C.-S. Poon, and S. T., unpublished data). We took advantage of this ability in attempts to prolong the life of the mutants by stimulating their respiration with CO2. In addition, pregnant mothers were injected with terbutaline, a β-adrenergic agonist, every 4–6 hr starting at E16.5. This usually delayed birth for 1 day. Treated animals were then allowed to give birth. Newborn pups were weighed and put into an air incubator. They were monitored closely. If cyanosis was observed, they were treated in a CO2 chamber to stimulate respiration. Wild-type or heterozygous littermate controls were treated according to the same regimen.

The average body weight for mutant pups at the time of birth is 1.323 ± 0.130 g (n = 10), close to that of wild-type and heterozygous animals (1.321 ± 0.171 g; n = 11), indicating that the general development of the knock-out mice is not significantly perturbed in utero.

Absence of Whisker-Related Patterns in the Brainstem Trigeminal Complex of Mutant Mice
In the brain of the normal mouse, the five rows (A–E) of whiskers, with specific numbers of whisker follicles in each row, are conspicuously represented by discrete neuronal modules in several trigeminalrecipient zones (for reviews see Woolsey, 1990; Van der Loos and Welker, 1985). In the brainstem trigeminal nuclei, the whisker-specific modules (barrelettes) are composed of the arbors of trigeminal sensory axons and the postsynaptic cells to which these axons project (Bates and Killackey, 1985; Ma, 1991). These neural elements form cylindrical aggregates oriented along the rostro-caudal axis of the brainstem. In transverse sections stained for mitochondrial enzymes (e.g., cytochrome oxidase [CO] or succinic dehydrogenase), five distinct rows of patches can be identified, each patch corresponding to a single whisker or pupil hair (Belford and Killackey, 1979; Ma and Woolsey, 1984). It is noteworthy that while patches of mitochondrial enzyme activity are closely correlated with the patterning of presynaptic axon arbors (Bates and Killackey, 1985; Chiaia et al., 1992a), reactive mitochondria are located primarily in the dendrites and somata of postsynaptic cells (Chiaia et al., 1992b). Thus, CO patterns in the brainstem can be taken as a reliable marker of the aggregation of postsynaptic neurons into barrelettes. The complete whisker-related pattern is repeated several times in the hindbrain: once in the principal sensory nucleus and once each in the subnucleus interpolaris and caudalis of the spinal trigeminal nucleus.

Animals with the genetic background we have used, namely, 129/Sv × BALB/c, C57BL/6 × BALB/c, or C57BL/6 × 129/Sv, are born between E16.5 and E19.5 (we refer to the morning of E19 as P0). In wild-type as well as in heterozygous animals of these strains, CO histochemistry reveals an emerging segmentation of the reaction product at the earliest time (E18.5) that the mice are born (Figure 3A). This is a day prior to that previously reported for Swiss-Webster outbred mice (Ma, 1993). We attribute this difference in appearance of the barrelettes to strain-dependent variations. In all our wild-type (n = 4) and het-
erozygous animals (n = 3), individual barrelettes are readily discernible by late P0 (E19.5). However, in none of the mutant animals (n = 9) is there any indication of row or patch formation.

To rule out the possibility of developmental retardation in the mutant animals, terbutaline was used to block the birth of mutant as well as normal pups in several litters. In combination, we attempted to extend the life of the mutant animals by CO₂ stimulation after birth. Normal littermate pups were treated the same way as controls were. These measures allowed the mutants to survive up to 21 days after conception (equivalent to P2; n = 3). Figure 3B shows a section through the spinal trigeminal nucleus of a wild-type pup whose birth was delayed for 1 day and that was kept in an incubator for an additional day (equivalent to P2). CO₂-positive barrelettes are clearly visible in this case, while no evidence of rows or individual patches is noted in the mutant littermate that survived to P2 under the same conditions (Figure 3C). This is true for all levels of the BSTC. Figure 4 illustrates that at P1.5, wild-type pups (n = 7) have normal barrelettes in principal nucleus and in subnuclei interpolaris and caudalis of the spinal
trigeminal nucleus, while their knockout littermates (n = 4) do not have these patterns. This difference cannot be attributed to a general lack or greatly diminished expression of the CO enzyme in the mutant brain: levels of CO enzymatic activity appear to be normal in regions of the hindbrain such as the hypoglossal nuclei, the inferior olive, and the motor nuclei of the trigeminal nerve. In addition, although the CO-positive patches are not visible in the trigeminal nuclei, staining above background levels does exist in this region (see Figure 3C; Figure 4).

The lack of barrelette formation in knockout animals was confirmed with the use of an alternative marker for delineating barrelette boundaries. Brainsem sections from normal and mutant mice were stained immunohistochemically, using a polyclonal antibody directed against cyto
tactin-binding proteoglycan (CTBP). CTBP is an extracel-
ular matrix molecule secreted by neurons. Its distribution reveals whisker-specific patterns along the trigeminal pathway (Crossin et al., 1996; Jhaveri et al., 1991). Unlike the CO activity pattern, CTBP is distributed around individ-
ual barrelettes, thus giving an image that is complementary to the pattern seen with CO histochemistry. Figure 5 shows an emergent segmented pattern in a CTBP-immunostained coronal section through the BSTC of a wild-type pup on P0 (Figure 5A; n = 5) and the lack of any pattern in an age-matched mutant pup (Figure 5B; n = 4). Together with the absence of CO patches, these observations confirm that barrelettes do not form in the mice that lack functional NMDA receptors.

Development of the Trigeminal Pathway in Normal and Mutant Mice

On P0, the gross appearance of the whiskers and their arrangement into five rows (A–E) is normal in the mutant mice. To determine that the absence of barrelettes does not result from a delayed connectivity between the whisker pad and the BSTC, we compared the development of the peripheral trigeminal pathway in control and mutant animals. Immunohistochemical staining using an antibody (TuJ1) against neuron-specific β-tubulin in E11 embryos

Figure 5. Barrelettes Detected by Immunohis-
tochemistry for CTBP
Coronal sections through the brainstem of nor-
mal (A) and mutant (B) P0 mice at the level of subnucleus interpolaris. The sections were immunostained with an antibody against the extracellular matrix molecule CTBP. The immuno-
positive pattern in the brainstem of the normal control animal reflects the emerging pattern of barrelettes. Note that the proteoglycan is deposited in the regions between rows. The five whisker-specific rows are indicated by arrowheads. No emergent pattern can be discerned with this antibody along the BSTC of the mutant animal. Scale bar, 9.2 mm for both micrographs.

Figure 6. Absence of Whisker-Specific Pat-
terns in Mutant Animals Is Not Due to a Delay in the Establishment of Trigeminal Connections between the Whisker Pad and the Brainsem
The first trigeminal axons in the mouse reach the presumptive whisker pad on E10 (Stainier and Gilbert, 1990). On E11, immunostaining for neuron-specific β-tubulin (using the TuJ1 antibody) reveals that, both in the normal (A) and in the mutant (B) animals, peripheral trigeminal axons have fully invaded the developing whisker pad. Central trigeminal axons have entered the hindbrain. No significant differences can be distinguished in the size of the trigeminal ganglion or of the trigeminal nerve between the mutant and normal animals. io, infratrochlear nerve; tg, trigeminal ganglion; hb, hindbrain; v, ventricle; *, presumptive whisker pad. Scale bar, 0.3 mm.
revealed that trigeminal axons reach their peripheral and central targets at the same time, both in mutants (n = 4) and in controls (n = 6; Figure 6; cf. Stainier and Gilbert, 1990), and that there are no gross differences in the size of the trigeminal ganglion, or in the density of its projections, between the two types of animals.

Next, we applied nonoverlapping crystals of the lipophilic tracer Dil in the dorsal (A) and ventral (E) whisker rows on one side of the snout, and in the middle whisker row (C) on the opposite side, in normal (n = 12) and mutant mice (n = 12) that were killed and fixed on E17 or on P0. Following appropriate times to allow for the diffusion of the dye, patterns of axonal labeling in the BSTC were examined. In normal mice, as for rats (Erzurumlu and Jhaveri, 1992), this labeling technique reveals the spatial order of trigeminal ganglion cell processes (Figure 7). Dil labeling of the dorsal and ventral rows resulted in two patches of axonal labeling, both in the ipsilateral principal nucleus and in the spinal trigeminal nucleus. On the other side of the hindbrain, Dil labeling from the middle whisker row revealed a single patch of axonal labeling in the midregion of these same nuclei (Figure 7). Such topographic ordering is present in the central trigeminal projections of both mutant and normal mice. Moreover, the density of axonal arbors in the mutant animals did not appear to be compromised. In fact, the labeled patches appeared to be larger, and at least some axon arbors were more extensive in the mutant (Figure 7B). However, further quantitation of axonal arbors needs to be done and the extent of labeling in BSTC should be normalized with the spread of Dil in the whisker pad.

NMDAR1 is Expressed at the Time of Barrelette Formation

To further investigate the involvement of NMDA receptors in the formation of barrelettes, we used sense and antisense probes for the NMDAR1 mRNA to perform in situ hybridization. The antisense RNA probe was incubated with coronal sections of both adult and newborn normal mice. The densely distributed grains observed with the antisense probe indicate the presence of high levels of the messenger for NMDAR1 in this part of the brainstem in the trigeminal nuclei of newborn mice (Figure 8A), while the sense probe showed no hybridization (Figure 8B). In adult mice, both neocortex and hippocampus gave strong hybridization signals, a pattern expected from previous studies (Figure 8C; cf. Moriyoshi et al., 1991). These results document that the messenger for the NMDAR1 subunit is present in the trigeminal nuclei of normal mice around the time of formation of the whisker-related patterns.

Excitability of Brainstem Trigeminal Neurons and Synaptic Transmission

To investigate whether NMDAR1 mRNA is translated and forms functional NMDA receptors in BSTC of normal newborn mice, and to study how the inactivation of NMDAR1 protein affects NMDA receptor-mediated and overall neu-
Figure 6. In Situ Hybridization Experiments to Demonstrate that the NMDA Receptor Is Normally Expressed in the Trigeminal Nuclei at the Time of Formation of the Barrelettes

(A) An antisense probe corresponding to 69 bp of the 5' untranslated region and to the 258 bp coding region for the first 86 amino acids of the NMDA receptor protein was hybridized to coronal sections through the brainstem of a normal control mouse on P0. (B) A section adjacent to that shown in (A) was hybridized with a sense probe. This section shows no hybridization. The antisense probe, when hybridized to a coronal section through the forebrain of an adult mouse (C), reveals mRNA patterns similar to those published previously by Moriyoshi et al. (1991). cb, cerebellum; cx, cortex. Arrowhead in (A) points to the midline. Asterisks in (A) indicate approximate boundaries of the subnucleus interpolaris. Scale bar, 1 mm in (A) and (B), 2 mm in (C).

Figure 9. Neuronal Excitability and Synaptic Transmission Are Present in the BSTC of P0 Mutant and Normal Mice

(A) Membrane voltage changes in response to current steps (± 0.04 nA). The depolarizing current step initiated a train of action potentials in both the mutant and normal neurons. (B) The synaptic current evoked by trigeminal tract stimulation has only non-NMDA receptor-mediated component in the mutant slice. The fast inward current evoked at a holding potential of −70 mV was abolished by CNQX (15 μM) and recovered after subsequent washout of CNQX. (C) The synaptic current has both NMDA and non-NMDA receptor-mediated components in the normal slice. After application of CNQX (15 μM), a small slow inward current remained and was later abolished by the addition of APV (100 μM). Holding potential, −70 mV. (D) The inhibitory synaptic current was present in the mutant slice. The synaptic current evoked at a holding potential of −40 mV has a fast inward non-NMDA receptor-mediated component and a slow outward GABA, receptor-mediated component. The latter was blocked by picrotoxin (100 μM).

To record neuronal activity, we used whole-cell patch clamp recording. Coronal slices were cut through the BSTC of normal and mutant mice, and the patch electrode was advanced gradually into the trigeminal nuclei of the slice until a cell was encountered and a tight seal was formed between the electrode and cytoplasmic membrane. The concentric bipolar-stimulating electrode was positioned at the lateral margin of the BSTC, where the trigeminal tract is located. Axons coursing through this tract send radially oriented collaterals into the BSTC, where they form terminal arbors. Once into the whole-cell mode by rupturing the membrane, the current clamp was performed. Cells within the whisker representation region of the BSTC were identified as neurons based on their ability to fire fast action potentials in response to depolarizing current pulses (Figure 9A). Cells from both NMDA mutant (n = 8) and normal mice (n = 7) exhibited neuronal excitability at P0.

Under the voltage clamp, electrical stimulation (0.2 to 1 mA) of the trigeminal tract routinely evoked excitatory postsynaptic currents (EPSCs; Figures 9B and 9C). At holding potentials of or negative to the resting potential, synaptic currents were inward going. In mutant slices (n = 3), only a fast inward current was apparent, which was abolished by bath application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an antagonist for non-NMDA receptors, indicating the absence of NMDA receptor-mediated component (Figure 9B). In wild-type slices (n = 2), there were both fast non-NMDA receptor-mediated (sensitive to CNQX) and slow NMDA receptor-mediated (sensitive to APV) postsynaptic currents (Figure 9C).
suggesting that the transmission is mediated via glutamate in this pathway.
It is also important to note that inhibitory synaptic currents (IPSCs) were present in some cells. An example of the IPSCs in the mutant slice is shown in Figure 8D (the cell was held at −40 mV). There were an early inward EPSC (blocked by CNQX) and a slow outward going inhibitory current. The IPSC seemed to be mediated by picrotoxin-sensitive GABA receptors \((n = 1)\).

Discussion

Studies on the role of NMDA receptors during map formation have focused primarily on the effects of applying NMDA receptor antagonists to projection zones during the time when these zones are being innervated and, in particular, as the efferent arbor is being elaborated. We have used an alternate strategy to explore this issue, that of eliminating the gene that encodes an essential subunit of the NMDA receptor. Our genomic Southern blot analysis showed that NMDAR7 is a single copy gene in the genome and we have deleted close to half of the protein-coding regions, including four transmembrane domains that are important for the formation of a functional NMDA channel (reviewed by Nakashiba, 1992; Figure 2). Further, results from whole-cell patch clamp recording of brainstem trigenral neurons in the mutant mice confirmed that we have knocked out NMDA receptor activity (Figure 9B). Our results show that, in the absence of NMDA receptors and in the presence of functional excitatory and inhibitory synaptic transmission, postsynaptic neurons fail to aggregate into barrelettes. We thus conclude that NMDA receptors are involved in the detailed patterning of target neurons, and most likely of afferent axons as well, to reflect the precise arrangement of peripheral sensory organs.

We present several lines of evidence to support this conclusion. First, with the use of CO histochemistry, no whisker-related segmentation is seen in the trigeminal nuclei of the mutant animal at a time when a patchy pattern is clearly discernible in the same regions of littermate controls (Figures 3 and 4). High levels of CO activity are present in trigeminal afferent arbors and their postsynaptic target neurons in the BSTC (Chiaia et al., 1992a, 1992b). Second, immunostaining for CTBP documents that, in the absence of afferent and target cell patterning, extracellular matrix molecules also do not take on a whisker-specific distribution in the hindbrain (Figure 5). Third, immunolabeling with axon-specific antibodies reveals that early events, such as the initial outgrowth of ganglion cell axones to their appropriate peripheral and central targets, occur along a normal schedule (Figure 6). Fourth, the DII labeling experiments document that trigeminal sensory axons form topographically appropriate connections between the whisker pad and the BSTC (Figure 7). These observations support the notion that the initial targeting, pathfinding, and topographic organization of axon systems can occur without the activation of the NMDA receptor, and that these events are unrelated to activity-dependent mechanisms (for a recent review see Goodman and Shatz, 1993). And, finally, results from the in situ hybridization and electrophysiological studies document that, in normal mice, the NMDAR1 subunit is expressed at high levels in the trigeminal nuclei and forms functional NMDA receptors on the day of birth, the time when the whisker-related patterns have just emerged, inculpating the receptor subunit as a participant in this event.

We do not have direct evidence as to whether the lack of barrelettes in mutant mice is due to a failure of segregation of afferent axon arbors. However, the DII labeling experiments suggest that while the trigeminal projection is topographically organized in the BSTC, individual axon arbors may be more widespread in mutant animals than in normal littermates (Figure 7B). This is consistent with the hypothesis that NMDA receptor-mediated activity plays a major role in the refinement of axonal projections (reviewed by Constantine-Paton et al., 1990; Shatz, 1990).

Since the mutant animals do not survive beyond P2, one might argue that the lack of pattern formation in the trigeminal nuclei merely reflects a developmental retardation. We think this is unlikely. Since malnutrition leads to retardation of the development of cortical barrels (Vongdokmai, 1980), body weight was monitored for all newborn animals. The average weights of knockout animals were not statistically different from those of normal animals that had undergone the same treatment (e.g., blocked birth, vaginal delivery, litter culling). Second, the anatomical studies show clearly that other morphogenetic events in this system, such as outgrowth of ganglion cell axoves and arrival of the axoves at the brainstem, occur along a normal schedule. In addition, we have labeled thalamocortical axoves to examine the timing of thalamic axoingrowth into the neocortex: they reach the cortex in mutatn mice at the same time as in littermate controls (unpublished data). Furthermore, there is no obvious difference in the laminar organization of the primary somatosensory cortex in mutant and normal mice at P0 (unpublished data). These observations validate our conclusion that the absence of barrelettes in the mutant animals is not due to the general arrest or delay of development, although we cannot completely rule out the possibility that barrelette formation is specifically delayed.

Studies in the visual system have demonstrated that activity plays a critical role in achieving connectonal precision between developing cell groups (for reviews see Constantine-Paton et al., 1990; Shatz, 1990). In contrast, studies in which TTX or AP5 was applied to the infratrocal nerve or to the developing somatosensory cortex of rats did not result in blocking the formation of barrel patterns in the somatosensory cortex (Chiaia et al., 1992c; Henderson et al., 1992; Schlagger et al., 1993). These reports led to the general belief that in the trigeminal system, activity plays a less important role during the development of whisker-related patterns (Katz, 1993a). However, it should be noted that in the above experiments, activity was blocked as of the day of birth. In the BSTC of the rat, the whisker-related pattern is present before the time of birth (Chiaia et al., 1992b) and, in some strains of rats, thalamocortical axoves are already patterned on P0 (Schlagger and O'Leary, 1993; cf. Erzurumu and Jhaveri, 1990; Blue et al., 1991). Thus, organizational information from the BSTC
may already have been encoded in the developing thalamocortical axons by the time activity or NMDA receptor blockade is initialized. Our results document that in the absence of functional NMDA receptors, barrelettes fail to develop in the hindbrain. Extrapolating from this result, we suggest that the formation of whisker-related patterns (barreloids and barrels) in the thalamus and cortex might also depend on activation of NMDA receptors.

Physiological studies on the receptive fields of individual fetal trigeminal ganglion cells reveal that spontaneous activity is low during the time barrelettes form in the rats (E16\textendash}E20), but that the majority of ganglion cells respond to indentation of the skin at the base of a single follicle (Chaia et al., 1993). It is possible that gentle pressure of the uterine wall could stimulate parts of the whisker pad. Given that peripheral sensory afferents are organized in a whisker-specific pattern before central patterns emerge, summed over time, this could lead to synchronous activation of ganglion cells innervating a single whisker and a consequent whisker-specific patterning of the central afferents and postsynaptic cells via activation of NMDA receptors. Alternatively, it is possible that a low level of spontaneous activity, in combination with coupling among neighboring ganglion cells, brainstem neurons, or both could result in the observed patterns (cf. Katz, 1993b).

Our electrophysiological studies show that in the absence of NMDAR1 protein, NMDA receptor activity is absent in the BSTC of mutant animals (Figure 9B). This is consistent with the results of studies conducted in Xenopus oocytes and transected human kidney cells (reviewed by Nakaneishi, 1992). In addition, we have demonstrated that in the absence of NMDA receptors, brainstem trigeminal neurons are excitable and both excitatory and inhibitory synaptic transmission is functional in the mutants (Figure 9). Thus, sensory inputs from the periphery could be transmitted to and processed in both the BSTC and normal BSTC. We hypothesize that failure of the barrelette formation is not caused by the lack of neuronal excitability or of synaptic transmission in the BSTC of NMDAR1 mutants, but by the blockade of the downstream cascade initiated by NMDA receptor activation. For the time being, however, it is not clear whether NMDA receptor inactivation has any modulatory effect on neuronal excitability and synaptic transmission. We are currently carrying out a systematic study of neuronal properties in the mutant mice.

The full sequence of downstream events that occur once the NMDA receptor is activated during the formation of barrelettes is not known. An interesting twist on the activity or NMDA receptor hypothesis is provided by a recent report that shows that prenatal NGF injections interrupt the formation of barrelettes in rats (Henderson et al., 1994). In this context, several studies have provided compelling evidence that NMDA receptor activation may trigger increased neurotrophin synthesis and secretion (Zefra et al., 1991; Amano et al., 1992; Pavan et al., 1993; Gwag et al., 1993; Gwag and Springer, 1993), thus linking activity-dependent refinement to the regulation of trophic factors. Future studies on the developmental expression of neurotrophines and neurotrophic receptors in the BSTC of both knockout and normal pups will shed light on the relationship between NMDA receptor activation and the regulation of neurotrophic expression. Once other factors involved in the signal transduction process downstream of NMDA receptor activation have been identified, these can be deleted using the ES cell technology. We have shown here that the whisker-to-barrel cortex system provides an excellent model for assaying the results of such genetic manipulations on pattern formation in the brain.

Experimental Procedures

Targeting Construct and Transfection of ES Cell
To determine the copy number of NMDAR1 gene in the mouse genome, genomic DNA isolated from mouse D3 ES cells (Geneset et al., 1986) was digested by BamHI, EcoRI, EcoRV, or HindIII, and hybridized with a probe spanning the region that encodes a 100 amino acid sequence in the carboxy-terminal region of the NMDAR1 protein.

NMDAR1 was cloned from a genomic EMBL3 plasmid library prepared from D3 ES cells with a probe generated by the polymerase chain reaction (PCR). The targeting construct was prepared by ligating a 2.5 kb XbaI-FspI fragment from the middle part of NMDAR1, a 1.8 kb Smal-XhoI fragment containing a neo gene driven by the pgk promoter, a 0.3 kb Nael-XhoI fragment from the 3’ end of NMDAR1, and the pBluescript (Stratagene), by digesting with appropriate restriction enzymes. This targeting construct is designed to delete exons 12\textendash}18 (Hollman et al., 1993) and replace them with the pgk-neo gene, transcribed in the same orientation.

D3 ES cells were transfected with 50 μg linearized targeting vector by electroporation (Bio-Rad Gene Pulser at 800 V and 3.0 μF), 48 hr selection (100 μg to 150 μg/ml genetin [GIBCO BRL]) was applied 24 hr after transfection, and resistant clones were isolated after 1 week of selection. Genomic DNA from these clones was digested with EcoRI and probed with a 1.2 kb fragment from the 5’ NMDAR1-flanking region (Figure 2Ab). Positive clones were confirmed by stripping the probe from the membrane and rehybridizing with a 900 bp HindIII-EcoRI probe located in the middle part of NMDAR1.

Production of NMDAR1 Mutant Mice
Generation of chimeric mice was done according to the procedure of Bradley (1987). Germine transfection was screened by mating chimeras with C57BL/6 mice and confirmed by genomic Southern blot analysis of tail DNA. Mice heterozygous for the mutation were interbred to homozygosity. Germine chimeras were backcrossed with 129/Sv, BALB/c, and C57BL/6 to transfer the mutation into these inbred lines.

Heterozygous females were mated overnight with the heterozygous males. The following morning, the females were checked for a vaginal plug and, if present, this day was referred to as EO. Plugged females usually gave birth between E18.5 and E19.5. To delay birth, pregnant mothers were injected with terbutaline (5 mg/kg) every 4 to 6 hr, starting on E16.5. This usually delayed birth for an additional day. Treated animals were then allowed to give birth. Newborn pups were weighed and put into an air incubator (55% humidity, 34°C). They were then monitored every 1–2 hr. If cyanosis was observed, they were treated in a chamber for 5 min with 5% CO2 and 20% O2 balanced with N2. About 15–25 hr after birth, the pups were overdosed with anaesthetics and perfused with saline followed by 4% paraformaldehyde in phosphate buffer.

Genotyping of the mice was done by Southern blotting of tail DNA: later mice were typed by PCR analysis with a set of neo primers (5’-GCTTGATGGAGAAAGCTTATC and 5’-CAAAGTGATGACGACCGAGATC, 280 bp PCR product) and a set of primers to the deleted region of the mutant NMDAR1 allele (5’-TGCCTGGACCTCGCTGCCTG and 5’-CTTCGATGCGGTTFAC, 550 bp PCR product).

Histochemical Methods
Cytochrome oxidase histochemistry was performed according to the procedure described by Wong-Riley (1987). Aldehyde-fixed cryoprotected brains were cut into 50 μm thick sections in the coronal plane on a freezing microtome. Sections were collected in phosphate buffer, and incubated in a solution consisting of 0.4 g sucrose, 50 mg diamindobenzine, and 40 mg cytochrome C in 100 ml phosphate buffer.
buffer at 37°C in the dark, until a golden brown reaction product could be visualized. The sections were rinsed in phosphate buffer, mounted onto slides, coverslipped with glycerol, and examined under a microscope.

For axonal labeling along the trigeminal pathway, small crystals of the carboxyamine dye Di (Godement et al., 1997; Molecular Probes) were placed in row A and B in one side of the face and in row C on the other side of the aldehydes-fixed E17 and P0 mouse heads. Specimens were stored in the fixate at 3°C for 3-8 weeks to allow for dye diffusion. The brains were dissected out, embedded in agar, and sectioned on a vibratome at a thickness of 100 μm. The sections were mounted onto slides, coverslipped with phosphate buffer, and viewed under epifluorescence using a rhodamine filter.

Immunohistochemistry for CTBP and β-hubulin was carried out according to published protocols (Crossin et al., 1999; Javari et al., 1991; Easter et al., 1993). In brief, 50 μm of brainstem sections was collected in PBS and preincubated in PBS plus 5% normal goat serum for 30 min at room temperature. The sections were then incubated overnight at room temperature in rabbit anti-mouse CTBP (dilution 1:500 or TuTu antibody dilution 1:2000) in PBS plus 0.1% NaN3 plus 5% normal goat serum. Control sections were incubated in preimmune serum. The sections were rinsed three times with PBS and incubated in FITC-conjugated goat anti-rabbit secondary antibody (for CTBP) or in FITC-conjugated goat anti-mouse secondary antibody (for TuTu) for 2 hr at room temperature. Following three rinses in phosphate buffer, sections were mounted onto slides, coverslipped with DPX mountant, and viewed under epifluorescence using an FITC filter.

In Situ Hybridization

In situ hybridization was done according to Whitfield et al. (1990) on 12 μm sections of both P0 and adult mouse brains. 5'-labeled RNA probes were generated in both transcription directions by using a subclone in the Bluescript vector (Stratagene) containing cDNA corresponding to 69 bp of the 5' untranslated region and 258 bp coding region for the first 86 amino acids of the NMDAR1 protein.

Electrophysiological Recording

Animals (P0) were decapitated under Metofane anesthesia, the brain was removed rapidly and placed in ice-cold oxygenated artificial cerebrospinal fluid composed of: 119 mM NaCl, 2.5 mM KCl, 1.3 mM MgCl2, 2.5 mM CaCl2, 26 mM NaHCO3, 1 mM NaH2PO4, 10 mM glucose (pH 7.4). Coronal slices, 500 μm thick, were cut with a vibratome through the brainstem, then maintained in an incubation chamber for at least 1 hr at room temperature (22°C-25°C). For recording experiment, a slice was transferred to a submerged recording chamber, where it was held by a nylon net and constantly perfused with oxygenated artificial cerebrospinal fluid (95% O2 and 5% CO2). The brainstem trigeminal nuclei and trigeminal fiber tract were visualized under a dissecting microscope.

Whole-cell recordings were obtained with conventional patch techniques. Patch electrodes (4-6 MΩ) were fabricated from soft glass (Drummond), and pulled on a three-step puller (Sutter Instrument). The internal solution contained 90 mM K acetate, 20 mM KCl, 2 mM MgCl2, 5 mM EGTA, 40 mM HEPES, 1 mM CaCl2, 2 mM ATP-Mg, and 0.2 mM EGTA (pH 7.2). Once inside the whole-cell mode, current injection experiments were first performed under the current clamp. Resting membrane potentials ranged from -45 to -65 mV. A constant holding current was used to keep the resting potential at -60 mV if necessary. Synchronous currents were then recorded under the voltage clamp. Trigeminal fibers were stimulated by a concentric bipolar electrode (Rhodes Instrument) that delivered 0.1 ms pulses. Data were digitized, stored, and analyzed on a 486 computer with an analog to digital converter (Digitigrade and pClAMP program (both by Axon Instrument). Signals were filtered at 2 KHz. Synchronous current records shown in Figure 9 was an average of 6 traces sampled at an interval of 20 s. Drugs were applied via bath application at final concentrations of 15 μM CNOX (Tocris Neuramin), 100 μM AP5 (Tocris Neuramin), or 100 μM picrotoxin (Sigma).

Acknowledgments

We wish to thank Drs. K. Crossin, A. Frankfurter, R. Kemler, M. Rudnicki, and A. J. Silva for their gift of various reagents; S. Hau, W. Lin, and E. Goland for technical assistance; Drs. L. Van Kaele and A. J. Silva for help with ES cell work; Drs. P. G. Ashton-Rickardt and E. Li for the advice on making chimeras; Dr. B. Kosofsky for help with in situ hybridization; Dr. D. G. Rainnie for advice on brainstem recording; Drs. M. Sur and J. Schneider for critical reading of the manuscript; and the members of Tenegawa lab for helpful discussion and encouragement. Y. L. and C. C. are research associates of the Howard Hughes Medical Institute. This work was funded by the Howard Hughes Medical Institute (S. T.), the Shionoig Institute for Medical Science (S. T.), and by research grant from the National Institutes of Health (NS 21679) to S. J.

Received December 6, 1993; revised December 29, 1993.

References

