Ejaculatory abnormalities in mice with targeted disruption of the gene for heme oxygenase-2


Department of Urology, Department of Biomedical Engineering, Department of Neuroscience, Department of Pharmacology and Molecular Science, and Department of Psychiatry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
Department of Psychology, College of Arts and Sciences, Johns Hopkins University, Charles & 34th Streets, Baltimore, Maryland 21218, USA
Center for Cancer Research, Massachusetts Institute of Technology, Building E17-110, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
Correspondence should be addressed to S.H.S.

Nitric oxide (NO) is well established as a neurotransmitter in the central and peripheral nervous systems. More recently, another gas, carbon monoxide (CO) has also been implicated in neurotransmission. In the nervous system CO is formed by a subtype of heme oxygenase (HO) designated HO2 (ref. 2). HO2 is localized to discrete neuronal populations in the brain resembling localization of soluble guanylyl cyclase, which is activated by CO (ref. 3). CO may also function in the peripheral autonomic nervous system, in conjunction with NO. The majority of ganglia in the myenteric plexus possess both HO2 and neuronal NO synthase (NOS). Defects in myenteric plexus neurotransmission occur both in mice with targeted deletion of genes for HO2 and neuronal NOS (ref. 5). HO2 also occurs in other autonomic ganglia including the petrosal, superior cervical and nodose ganglia. Neuronal NOS is localized to neurons regulating male reproductive behavior, such as penile erection, and NOS inhibitors prevent erection. Because of the other parallels between NO and CO, we speculated that CO may play a role in male reproductive behavior. In the present study we describe HO2 localization in neuronal structures regulating copulatory reflexes. Reflex activity of the bulbospinosus muscle, which mediates ejaculation and ejaculatory behavior, is markedly diminished in mice with targeted deletion of the gene for HO2 (HO2).

Immunohistochemical staining reveals that HO2 protein is localized to the major pelvic ganglion and its nerve distributions to the penis, urethra, bladder neck, vas deferens and prostate, and to pudendal nerve branches in the penis and urethra, as well as to vascular endothelium and epithelium within genitourinary structures of wild-type mice (Fig. 1). The occurrence of HO2 in these autonomic ganglia parallels previously reported localization of HO2 in petrosal, superior cervical, nodose and myenteric ganglia, while genitourinary endothelial localization for HO2 resembles distributions in other blood vessels. HO2 staining is absent in HO2−/− mice.

Because HO2 is localized to neuronal systems that mediate ejaculation, we monitored reflex activity of the bulbospinosus muscle in response to urethral distention (Fig. 2). McKenna and associates have shown that bulbospinosus electrical activity following increased urethral pressure reflects firing of the pudendal motor neurons that mediate contraction of perineal musculature during ejaculation. Increased urethral pressure produces progressively increased activity of the bulbospinosus muscle in wild-type mice. This activity is almost obliterated in HO2−/− animals with no consistent effect of increased urethral pressure. The reduction in bulbospinosus reflex is evident in two different background strains of HO2−/− animals compared with the appropriate wild-type controls, that is, a 129/SvEv congenic and a C57Bl6×129/SvEv hybrid strain (colisogenic data not shown).

The requirement of HO2 for the bulbospinosus reflex suggests that HO2 and CO may normally play a contributory role in ejaculation even though substantial defects in fecundity were not evident during the breeding of HO2−/− mice. However, fertility and overall reproductive success have not been systematically evaluated, and initial observations suggest some reduced breeding efficiency in HO2−/− animals. We evaluated mating in HO2−/− males and females paired with wild-type mating partners. We observe no abnormalities in female HO2−/− mating behavior in terms of the ability of HO2−/− females to elicit mounts from wild-type males and the number of lordotic postures in response to mounting (data not shown). However, we do observe abnormalities in male mating behavior (Table 1). In a 30-min test period, 60% of wild-type males mount, consistent with the known slow mating activity of C57BL6 mice. The percent of HO2−/− mice mounting is significantly less than wild-type, although there are no differences between the groups in mounting latency. HO2−/− mice also display significantly less intromission activity. Most striking is our observation that none of the HO2−/− animals ejaculate, whereas one-third of wild-type mice that intromit do ejaculate, a proportion typically observed in mice of this strain.

To ascertain whether the copulatory abnormalities are related to a defect in the erectile mechanisms, we employed electrical stimulation of the cavernous nerves in a paradigm that reflects physiological erection. In HO2−/− mice (n = 3) erection following nerve stimulation is as robust as in wild-type mice (n = 18) (data not shown).

Copulatory behavior is influenced by serum testosterone. We find no significant difference in serum testosterone between HO2−/− and wild-type animals (data not shown). Moreover, McKenna et al. have shown that castration does not alter the bulbospinosus reflex. To ascertain that the abnormal sexual
behavior in HO2- animals does not derive from defects in sensorimotor activity, we evaluated olfactory ability, motor coordination, motor strength and visual acuity as well as behavior in an open field arena (Table 2). In the open-field test, which assesses the "anxiety" of animals monitored by their reluctance to move about in an open field area, HO2- mice display increased activity. We do not detect abnormalities in any of the other tests except for some decrease in apparent forelimb strength. In the test of forelimb strength mice are suspended by their forelimbs from a wire and latency to fall is monitored. Conceivably, the increased tendency to fall displayed by the HO2- animals reflects less "fear of falling" as is implied by the decreased fear responses in the open-field test. Thus, the overall sensorimotor behavior of HO2- animals does not seem to be notably impaired and is not likely to account for the deficient intromission and ejaculation. To evaluate aggressive behavior, we utilized an intruder-resistant model in which we previously reported increased aggressive behavior in male mice with targeted deletion of the gene for neuronal NOS (ref. 10). We observe no abnormal aggressive behavior in HO2- mice (data not shown).

In summary, our behavioral experiments reveal a reduction in intromission and mounting and an absence of ejaculation in HO2- animals. These behavioral abnormalities probably do not reflect a defect in erection, since induced erection by nerve stimulation appears to be normal in the HO2- animals. Recent studies indicate that the "coital reflex" comprises closely coordinated systems that mediate both intromission and ejaculation. Thus, the same or closely related abnormalities may underlie both the reduced number of intromissions and the defective ejaculation. The reduced frequency of mounting in HO2- animals may be secondary to motivation, owing to diminished positive feedback from intromission and ejaculation activity.

Since fecundity is at least grossly preserved, most HO2- mice presumably ultimately ejaculate. In gene knockout experiments, one can never definitively ascertain the magnitude of the gene's contribution to a given function, because the gene has been deleted from early embryonic stages, usually leading to compensatory mechanisms. Thus, we cannot judge the relative contribution of HO2 to ejaculatory behavior. It is likely that the crucial role of reproductive physiology in species survival leads to multiple regulatory mechanisms for each aspect of reproductive physiology, including ejaculation.

The ejaculatory defect in HO2- animals may derive from their profoundly defective bulbar-spongiosal reflex. Loss of HO2 localized to pudendal nerve branches and pelvic autonomic neurons that innervate the bulbospongiosus and related muscles presumably accounts for the defective reflex. The exact ganglia that regulate the reflex have not been identified. Besides its neuronal localization in the genitourinary pathway, HO2 occurs in vascular endothelium and epithelial layers, and its presence there might have some chemosensory influence on ejaculatory mechanisms. However, the rapid reflex character of the ejaculatory process fits best with a predominantly mechanically stimulated neural regulation. It is interesting that neuronal NOS is also localized to autonomic neurons and vascular endothelium of the genitourinary tract. NOS inhibitors block penile erection and penile smooth muscle relaxation, indicating a role for NO in the erectile process. The normal erections observed in mice with genetic deletion of neuronal NOS have been linked to upregulation of endothelial NOS (ref. 13).

Table 1 Mating behavior of HO2- male mice

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Wild-type strain</th>
<th>HO2- strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting</td>
<td>129</td>
<td>129</td>
</tr>
<tr>
<td>Fraction mounting</td>
<td>14/25</td>
<td>5/8</td>
</tr>
<tr>
<td>Latency to mount</td>
<td>681 ± 142</td>
<td>857 ± 172</td>
</tr>
<tr>
<td>Intromission</td>
<td>978 ± 140</td>
<td>919 ± 180</td>
</tr>
<tr>
<td>Ejaculation (of those intromitting)</td>
<td>4/12</td>
<td>0/3</td>
</tr>
</tbody>
</table>

Data are means ± s.d. with numbers of animals in each group as the denominator and the number of performing animals as the numerator, in seconds.

*Significantly different from wild-type mice, P < 0.05 by chi-square analysis.

Fig. 1 Heme oxygenase-2 (HO2) immunostaining of genitourinary tissues from wild-type and HO2- mice. In sections of the dorsal aspect of the penis (a), and proximal urethra (e) of the wild-type mouse, HO2 localization includes nerve trunks of the dorsal nerve of the penis (arrow), endothelium (arrowheads), and the epithelium of the ejaculatory ducts (E) and urethra (U). Corresponding sections from HO2- mice (b and d) exhibit only nonspecific background staining. In the major proctatic gland of the wild-type mouse (e), HO2 immunoreactivity is apparent in glandular cells (arrows) and nerve fibers (arrowheads), as well as in the glandular epithelium of the adjacent prostate (f). Preincubation of HO2 antisera with HO2 peptide abolishes immunoreactivity (f). V, dorsal vein of the penis. Scale bars, 250 µm.
Fig. 2. Bulbospongiosus electromyographic activity in response to urethral pressure stimulation in wild-type and HO2- mice. a, An example of an experiment using an urethral pressure stimulus of 50 cm H2O in which unprocessed and integrated voltage recordings were obtained. In order to provide clarity of EMG and firing rate depictions in HO2- samples, the example is from a mouse with a lesser defect than the majority of HO2- mice. 

Despite its clinical importance, ejaculation has not been well characterized in terms of fundamental neuromuscular mechanisms that mediate the response. Sympathetic activity plays a role, as ablations of sympathetic nerves and antisympathetic drugs impair ejaculation16. A descending serotonin neuronal pathway may inhibit ejaculation, as 5,6-dihydroxytryptamine lesions of descending serotonin pathways enhance ejaculation17, whereas antidepressants that augment serotonin neurotransmission retard ejaculation18. The ejaculatory reflex itself comprises coordinated contractions of the bulbospongiosus and ischiocavernous somatic muscles as well as the smooth musculature of the vas deferens, ejaculatory ducts, proximal urethra and bladder neck19. These muscles are regulated by a variety of neural inputs including sympathetic and parasympathetic innervation to the genitourinary structures involved in ejaculation and somatic innervation to striated perineal musculature. HO2 staining is prominent in pelvic autonomic and somatic neural pathways.

How might HO2 in the genitourinary innervation regulate reproductive organ functions? In the myenteric plexus of the intestines, CO mediates non-adrenergic, non-cholinergic (NANC) neurotransmission, utilizing cyclic GMP as a second messenger. Since smooth muscle relaxation of blood vessels and gut is regulated by cGMP, the formation of which is stimulated by CO, it appears most plausible that the product of HO2 regulating the neuromuscular reflex mechanisms involved in ejaculation is CO. However, HO2 also forms Fe2+ and biliverdin, which may be involved, although neither has been demonstrated to influence cGMP. Bulbospongiosus reflex activity is not influenced by adrenergic and cholinergic agents20, and so may also reflect NANC transmission. Whether cyclic GMP is the second messenger of CO in the urogenital system remains to be established.

Ejaculatory disturbances are common clinical problems, reported in approximately 40% of adult males21. Except for the recent use of serotonin-specific reuptake-inhibiting antidepressants, such as fluoxetine, sertraline and paroxetine, few treatments are available for premature ejaculation. Treatment options for delayed ejaculation are similarly lacking. If CO is a transmitter mediating ejaculation, then peripherally selective HO2 modulators might be effective agents in treating dysfunctions with minimal central nervous system side effects.

Methods
Adult male C57BL6 and Agouti 129 (wild-type) and HO2- mice22 (~30 were used. The HO2- animals were derived from the wild-type strain. Animals were killed by CO2 inhalation, and the urinary bladder, urethra (including the external urethral sphincter), and the penis with adjacent bulbospongiosus musculature were removed en bloc. Tissue sections (10 μm thick) were obtained after liquid nitrogen immersion for immunohistochemistry and histology.

Affinity-purified rabbit anti-rat HO2 antibody was generated against synthesized peptide corresponding to amines 247-238 of rat HO2 (ref. 18). Immunohistochemical localizations of nerves were verified with rabbit anti-human protein gene product 9.5 antibody23 (Accurate Chemical Co., Westbury, NY).

Behavioral testing involved a battery of sensorimotor tasks that appraise capabilities necessary for copulatory success in rodents and mating studies as described previously24. Electrophysiologic induction of penile erection was performed as described previously24. Serum testosterone levels were measured as described25. Monitoring of urethrogenital reflexes was conducted in a manner similar to that previously described26. In brief, animals were anesthetized with xylazine (1.8 g/kg, i.p.) and underwent lower midline abdominal laparotomy and cystotomy for antegrade proximal urethral cannulation with a PE-50 catheter, distal penile urethral ligation, and bipolar electrode placement on the surface of the bulbospongious muscle for electromyographic recordings. Urethral pressures were generated by catheter infusion for 30-s intervals.
tions in duplicate at 10-cm H₂O increments from 40 to 90 cm H₂O with 200-s intervals between stimuli. Action potential responses were detected by a window discriminator, and the resultant standardized pulses were averaged by a low-pass filter to produce a signal that is proportional to the frequency of the action potentials. This signal was sampled at 25 Hz and recorded on a computer for further processing. Experiments were done with the experimenter blind to the genotype of animals.

Where appropriate, results are expressed as mean values ± s.e.m. Variables were evaluated by analysis of variance with statistical differences determined by using Student's t-test.

Acknowledgments
We thank Ramón Zakhary and Kevin McKenna for helpful discussions. This work was supported by USPHS grant DA-06264 and Research Scientist Award DA-00074 (S. H. S.); Grant HD-12201 (J. R. N.); a New Investigator Grant from the American Foundation for Urologic Disease with funds contributed by G. D. Searle, and a Merck Clinician Scientist Award (A. L. B.).

RECEIVED 8 JULY; ACCEPTED 24 OCTOBER 1997