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SUMMARY

Cortical representations of visual information
are modified by an animal’s visual experience.
To investigate the mechanisms in mice, we re-
placed the coding part of the neural activity-
regulated immediate early gene Arc with a
GFP gene and repeatedly monitored visual
experience-induced GFP expression in adult
primary visual cortex by in vivo two-photon mi-
croscopy. In Arc-positive GFP heterozygous
mice, the pattern of GFP-positive cells ex-
hibited orientation specificity. Daily presenta-
tions of the same stimulus led to the reactiva-
tion of a progressively smaller population with
greater reactivation reliability. This adaptation
process was not affected by the lack of Arc in
GFP homozygous mice. However, the number
of GFP-positive cells with low orientation spec-
ificity was greater, and the average spike tuning
curve was broader in the adult homozygous
compared to heterozygous or wild-type mice.
These results suggest a physiological function
of Arc in enhancing the overall orientation spec-
ificity of visual cortical neurons during the post-
eye-opening life of an animal.

INTRODUCTION

Neurons in the primary visual cortex respond most inten-

sively to edges of light at specific orientations (Hubel

and Wiesel, 1962). The initial establishment of this orienta-

tion selectivity does not require visual input; some orienta-

tion selective neurons are already present at the time
of eye opening after birth (Hubel and Wiesel, 1963).

However, the overall orientation selectivity of the neurons

in the primary visual cortex is enhanced by visual experi-

ence in the juvenile animals (Chapman et al., 1999; Crair

et al., 1998; White et al., 2001). In adults, daily practice

of orientation identification tasks can further improve ori-

entation selectivity (Schoups et al., 2001).

To investigate the cellular mechanisms of experience-

dependent changes in orientation selectivity, it would be

desirable to repeatedly monitor the responses of the

same population of neurons at single-cell resolution over

a prolonged period of time (days). However, orientation

selectivity has traditionally been determined by recording

single-unit spiking activities with extracellular microelec-

trodes (Hubel and Wiesel, 1963), which does not allow

repeated sampling of the same cells. Optical imaging

of intrinsic metabolic signals has been used to follow ori-

entation preference maps in the same animals (Chapman

et al., 1999), but this technique does not have single-cell

resolution.

At the molecular level, relatively little is known about the

factors contributing to experience-dependent changes in

orientation selectivity. Genetic elimination of NMDA re-

ceptor subunit 2A (NR2A) or postsynaptic scaffold protein

PSD-95 reduced orientation selectivity, as indicated by

single-unit recordings (Fagiolini et al., 2003), raising the

possibility that signaling through NMDA receptors may

be essential for the induction of orientation plasticity.

However, it is not known what molecules may mediate

the expression of these plastic changes.

In order to circumvent some of the shortcomings of

those approaches adopted previously, we combined in

vivo two-photon microscopy with mouse genetic engi-

neering. Two-photon microscopy offers the opportunity

to chronically track fluorescent markers in the same neu-

rons for many days in live animals (Grutzendler et al.,

2002; Trachtenberg et al., 2002). To construct a genetically
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encoded optical reporter of a cellular response to neuronal

stimulation, we created a strain of mouse in which a GFP

gene replaced the coding part of the immediate early gene

Arc. In this strain of mouse, GFP expression is under the

control of the endogenous Arc promoter, which is acti-

vated by neuronal stimulation in forebrain regions (Link

et al., 1995; Lyford et al., 1995). In visual cortex, Arc

gene is inactive until after eye opening, and thereafter be-

comes rapidly activated by visual stimulation (Lyford et al.,

1995; Tagawa et al., 2005). Interruption of synaptic input

to primary visual cortex has been shown to prevent this

post-eye-opening activation of the Arc gene (Lyford

et al., 1995; Tagawa et al., 2005). In addition, pharmaco-

logical blockade of NMDA receptors completely abolishes

Arc expression (Link et al., 1995; Lyford et al., 1995; Stew-

ard and Worley, 2001b). Thus, the expression of Arc pro-

moter-driven GFP (Arc-GFP) could be used as a reporter

of neural activity-regulated, NMDA receptor-dependent

cellular response. Although the relationship between Arc

expression and firing of action potentials has not been en-

tirely elucidated (Guzowski et al., 1999; Guzowski et al.,

2006), we monitored Arc-GFP expression in individual

neurons and refer to this as neuronal activation throughout

the paper.

The in vivo physiological functions of Arc protein have

thus far remained largely unknown. Electron microscopic

analysis revealed that Arc protein can preferentially local-

ize to excitatory synapses in recently activated dendritic

segments, while biochemical studies showed the associa-

tion of Arc with protein complexes present in the postsyn-

aptic density (Moga et al., 2004; Steward and Worley,

2001a).Additionally, injectionofArcantisenseoligonucleo-

tides into the hippocampus appears to reduce the main-

tenance of LTP (Guzowski et al., 2000). Together, these

observations suggest that Arc may be important for neu-

ronal plasticity. However, whether or not Arc protein plays

a role in orchestrating cortical ensembles activated by

natural sensory stimuli has not been investigated.

Here, we show that Arc-GFP expression was induced in

distinctive neuronal ensembles by horizontally or vertically

oriented visual stimuli in the primary visual cortex of Arc-

GFP heterozygous mice. These ensembles became pro-

gressively smaller and more reliable for reactivation as

the same animal was repeatedly exposed to the stimuli

over the period of a week. This adaptation process was

not affected by the lack of Arc in Arc-GFP homozygous

mice. However, the GFP+ population in the homozygous

mice was larger than that in the heterozygous mice and

this difference was due to an occurrence of a greater num-

ber of cells with relatively low orientation specificity in the

homozygous mice. These imaging data were corrobo-

rated by the single-unit microelectrode recording data

showing that on average, Arc-lacking cells in the homozy-

gous mice had reduced orientation selectivity and broad-

ened orientation tuning response. Taken together, our

study has revealed the existence of two separable experi-

ence-dependent visual cortical plasticity processes; one

is Arc-dependent enhancement of orientation specificity
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operating during the post-eye opening life, and the other

is Arc-independent adaptation process operating in an

adult animal while it is repeatedly exposed to a given

visual stimulus.

RESULTS

Generation and Characterization of Arc-GFP

Knockin Mice

To begin to investigate the mechanisms underlying expe-

rience-dependent cortical information processing, we de-

veloped an Arc-GFP knockin mouse line. In order to gen-

erate a faithful reporter of Arc promoter activity, the DNA

construct containing the GFP coding sequence was in-

serted after the ATG start codon of the endogenous Arc

gene through homologous recombination in embryonic

stem cells (Figure 1A). The targeting of GFP into the Arc

genomic locus was confirmed by southern blot (data not

shown) and PCR analysis (Figure 1B). Mice were normally

reared until 2–3 months of age before the start of experi-

ments. The level of Arc protein in brain extracts was unde-

tectable in the homozygous mice (Figure 1B), while it was

reduced by only 20% in the heterozygous mice compared

to the wild-type mice (het/wt: 0.80 ± 0.10 SE, n = 4, see Ex-

perimental Procedures). Functionally, this small reduction

of Arc protein level in the heterozygous mice did not seem

to affect their visual responses (Figures 7B–7D). To con-

firm that the expression of GFP coincides with that of

the endogenous Arc protein in the heterozygous mice,

we exposed these mice to a lighted environment, then

two hours later, performed double immunofluorescent

staining with antibodies specific for Arc and GFP on sec-

tions of primary visual cortex. We observed that the major-

ity of the Arc and the GFP signals indeed overlapped

(Figure 1C). Under the same experimental condition,

GFP was expressed in the homozygous mice, but Arc

protein was not detectable (Figure 1C).

In order to report the dynamic regulation of Arc pro-

moter by neural activity, a destabilized form of GFP

(d2EGFP) was used in the targeting construct. The half-

life of d2EGFP is shortened to approximately two hours

(Li et al., 1998), comparable to the decay time of Arc pro-

tein (Wallace et al., 1998). In addition, the degradation of

d2EGFP is not affected by neural activity (Sutton et al.,

2004). To characterize the time course of Arc-GFP induc-

tion in primary visual cortex, we examined the GFP signals

on brain sections at various time points after briefly expos-

ing dark-adapted mice to a visual environment. We found

that the GFP signals from previous visual experience were

absent after overnight (20 hr) dark adaptation (Figure 2A),

same as the Arc gene expression (Tagawa et al., 2005).

The newly induced GFP signals reached a peak level ap-

proximately 2 hr after visual stimulation, and disappeared

12 hr later (Figure 2A). To examine the dependency of GFP

induction in primary visual cortex on visual inputs, we ex-

posed the Arc-GFP mice to a novel chamber in complete

darkness. GFP signals were not induced in primary visual

cortex under this condition (Figure 2B). Therefore, visual



Figure 1. Generation and Characteriza-

tion of Arc-GFP Knockin Mice

(A) Diagram of the gene-targeting construct.

(B) Arc protein production was completely dis-

rupted in the homozygous mice, as shown by

Western blot analysis of brain extracts (left

panel). The expression level of a house-keep-

ing enzyme GAPDH was used as a sample

loading control. The genotypes of mice were

shown by PCR analysis (upper right panel).

The disruption of Arc mRNA expression in ho-

mozygous mice was shown by RT-PCR analy-

sis of brain total RNA preparation (lower right

panel). The positions of primers are shown

in (A).

(C) Double immunofluorescent staining of Arc

(red) and GFP (green) in the visual cortex of

Arc-GFP mice that were visually stimulated.

GFP and Arc were expressed in the same cells

in the heterozygous mice (1, 2, 3), whereas Arc

was not expressed in the homozygous mice (4),

as shown in separate (1, 2) and overlaid (3, 4)

channels. The scale bar represents 20 mm.
inputs are required for the Arc-GFP response. To examine

the dependency of Arc-GFP response on NMDA receptor

mediated neural activity, we administered the NMDA re-

ceptor antagonist MK-801 to Arc-GFP mice. After drug

administration, visual stimulation failed to induce GFP sig-

nals (Figure 2B). Taken together, the induction of Arc-GFP

by visual inputs reflects an NMDA receptor-dependent re-

sponse of the endogenous Arc promoter in primary visual

cortex.

In Vivo Imaging of Arc-GFP Induction

by Visual Stimulation

We next adapted an in vivo two-photon imaging method

(Majewska and Sur, 2003) to repeatedly monitor the ex-

pression of Arc-GFP in the brain of live mice. Normally

reared Arc-GFP mice at 2–3 months of age were im-

planted with transparent cranial windows over the primary

visual cortex. Before the start of the first imaging session,

an Arc-GFP mouse was housed in dark overnight for 20 hr

(Figure 3A). It was then exposed to a salient visual stimulus

in an unrestrained environment for 15 min. Two hours
later, when the induction of Arc-GFP would have reached

its peak level, the mouse was anesthetized and placed on

a microscope stage for two-photon imaging of the super-

ficial layers of primary visual cortex. Both the unique vas-

culature patterns and stable auto-fluorescent signals were

used as alignments for repeated imaging of the same

animal (Figure 3B and Experimental Procedures).

Reliability and Experience-Dependence of Arc-GFP

Response during Repeated Visual Exposures

To examine whether Arc-GFP signals reliably report the

same visual experience in repeated exposures, we im-

aged the expression of Arc-GFP in heterozygous mice in

response to a constant visual environment once per day

for six consecutive days. To control the properties of the

visual stimulus, we designed a visual environment consist-

ing of a cylinder covered with alternating black and white

stripes of equal widths aligned in either a horizontal or

a vertical orientation. Video monitoring confirmed that

the mice freely explored the environment during the

15 min exposure time, and showed no neck torsions that
Cell 126, 389–402, July 28, 2006 ª2006 Elsevier Inc. 391



Figure 2. The Dynamics and Specificity of Arc-GFP Activation by Visual Input

(A) Heterozygous Arc-GFP knockin mice were dark adapted for 20 hr, then exposed to a visual environment for 15 min. Afterwards, the mice were

returned to their home cages in the dark, and sacrificed at 0.5, 1, 2, 4, and 12 hr later. Time point 0 refers to mice sacrificed before light stimulation.

GFP expression in those mice was detected by immunofluorescent staining on fixed sections of primary visual cortex, using GFP-specific antibody.

The scale bar represents 100 mm.

(B) Detection of GFP-expressing cells by confocal microscopy on fixed sections of the superficial layers of primary visual cortex. GFP-expressing cells

were not observed in any superficial layers after mice were dark adapted overnight in their home cages (1). GFP-expressing cells were detected in

layers II, III, and IV 2 hr after mice were exposed to light in a novel chamber (2). Exposure to a novel chamber in the dark (3) or exposure to a novel

chamber in light 30 min after intraperitoneal injection of 1 mg/kg NMDA receptor antagonist MK-801 (4) did not lead to GFP induction. The scale bar

represents 40 mm.
would distort the stimulus orientation (data not shown).

Such visual environments have been used effectively be-

fore to restrict visual experience to a single orientation in

kittens (Sengpiel et al., 1999).

When images of the same cortical region from two con-

secutive days were examined, the patterns of activated

neurons appeared to be quite similar (Figure 3B). But

fewer neurons were activated on day 2 than that on day

1 (Figure 3B). Quantitative image analysis showed that

there was a clear reduction in the number of GFP+ neu-

rons after repeated exposure to the stripes of the same

orientation, regardless whether the stripes were horizon-

tally or vertically oriented (Figure 3C). However, the num-

ber of GFP+ neurons increased to the day 1 level in
392 Cell 126, 389–402, July 28, 2006 ª2006 Elsevier Inc.
response to a new stimulus (Figure 3D), suggesting that

the reduction in cell number is specific to the repeated vi-

sual stimulus. These data also show that the reduction in

cell number is not due to the dark rearing between the

daily light exposure sessions, or the anesthesia treat-

ments during the microscopic observation. To further un-

derstand how the reduction of GFP+ neurons is driven by

repeated experience, we constructed a tree graph to trace

the reactivation probabilities of neurons based on their

prior activation history (Figure 3E, ‘‘activation’’ refers to

Arc-GFP expression). Strikingly, we observed that the

neurons that were consistently activated before became

more likely to be reactivated (Figure 3F), while those that

were consistently inactive before became more likely to



remain silent (Figure 3G). Therefore, repeated exposures

to the same stimulus led to the reactivation of a progres-

sively smaller population of cells with greater reactivation

reliability.

Orientation Specificity of Arc-GFP Response

We next investigated whether Arc-GFP activation patterns

consistently report stimulus orientation. Arc-GFP hetero-

zygous mice were exposed to horizontal or vertical stripes

on alternate days for a total of six days. Distinctive activa-

tion patterns of Arc-GFP were observed in response to

different orientations (Figure 4A). The percentage of day

1 GFP+ neurons that were reactivated on subsequent

days was consistently higher on days 3 and 5 when the

stimulus orientation was the same as day 1, than that on

days 2, 4, and 6 when the stimulus orientation was orthog-

onal to day 1 (Figure 4B). Similarly, the percentage of day 2

GFP+ neurons that were reactivated on subsequent days

also correlated with the stimulus orientation (Figure 4C).

Taken together, we conclude that the Arc-GFP signals

reveal orientation specific neuronal responses in primary

visual cortex.

More GFP+ Neurons Activated by a Single

Orientation in Arc Knockout Mice

Our data on the orientation specific Arc-GFP responses

provide direct cellular snapshots of experience-depen-

dent information processing in visual cortex (Figures 3C–

3G, 4B, and 4C). The Arc-GFP knockin mouse line there-

fore offers a genetic system to examine the mechanisms

underlying the experience-dependent and orientation-

specific activation of neuronal ensembles in primary visual

cortex. In particular, in the homozygous Arc-GFP mice,

Arc protein is not produced, but GFP is still expressed un-

der the control of Arc promoter (Figures 1B and 1C). To

investigate Arc protein function, we compared the GFP

expression patterns in the Arc-GFP homozygous mice to

those in the heterozygous mice at 2–3 months of age

with normal rearing conditions before the start of imaging

experiments. We first tallied the number of GFP+ neurons

in each imaged brain region that were activated by a single

orientation presented on experimental day one (Figure 5A).

Interestingly, there were more GFP+ neurons in the homo-

zygous than that in the heterozygous mice (Figure 5A, p <

0.001, n = 24). To determine whether this difference might

be due to an increase of fluorescence intensity (calculated

as the ratio between the soma GFP signal and its sur-

rounding background, see Experimental Procedures) in

the homozygous mice, which have two copies of the

GFP gene rather than one copy as in the heterozygous

mice, we compared the intensity distribution of GFP+ neu-

rons in those mice. There were more GFP+ neurons in the

homozygous mice than in the heterozygous mice across

the whole range of intensity levels (Figure 5B). On the other

hand, the mean intensity level did not change significantly

between the two genotypes (Het: 2.77 ± 0.06 SE,

Hom: 2.92 ± 0.10 SE, p = 0.21, t test, n = 24). Thus, the

larger population of GFP+ neurons activated by a single
orientation in the Arc homozygous mice did not seem to

be caused by a shift in fluorescence intensity.

Normal Reactivation Probability of GFP+ Neurons

during Repeated Exposures to the Same

Orientation in Arc Knockout Mice

We next examined a potential role of Arc in regulating the

reactivation probabilities of GFP+ neurons during the

SAME orientation exposure paradigm (as in Figures 3F

and 3G). Although there were more activated neurons in

the homozygous than the heterozygous mice on each of

the exposure days (Figure 5C), the numbers of activated

neurons decreased with repeated exposures in the homo-

zygous mice as in the heterozygous mice. When we com-

pared the dependence of Arc-GFP reactivation probability

on prior activation histories (Figures 5D and 5E), we found

no significant difference between the two genotypes (p >

0.05, n = 12 regions, repeated measures two-way ANOVA).

Therefore, Arc protein does not seem to be important for

regulating the reactivation probabilities of GFP+ neurons

during repeated exposures to the same orientation.

Reduced Orientation Specificity of the Patterns

of GFP+ Neurons in Arc Knockout Mice

We then studied the effect of Arc knockout on the orienta-

tion specificity of the patterns of GFP+ neurons in the al-

ternate-orientation exposure paradigm (as in Figures 4B

and 4C). The shapes of reactivation curves were signifi-

cantly different between the heterozygous and homozy-

gous mice (Figures 5F and 5G, p < 0.0001, n = 12 regions,

repeated measures two-way ANOVA). In particular, the

percentage of day 1 GFP+ neurons reactivated by expo-

sure to the orthogonal orientation (on day 2, 4, and 6)

was significantly higher in the homozygous compared to

the heterozygous mice (Figure 5F, p < 0.001, with correc-

tion for multiple comparison). By contrast, the percentage

of neurons reactivated by exposure to the same orienta-

tion (on day 3 and 5) was not significantly different be-

tween the two genotypes (Figure 5F, p > 0.05). Therefore,

the orientation specificity of the patterns of GFP+ neurons

was reduced in Arc knockout mice.

Increased Numbers of GFP+ Neurons with Relatively

Low Orientation Specificity in Arc Knockout Mice

To investigate how the loss of Arc function affects the re-

sponses of individual neurons in more details, we classi-

fied GFP+ neurons into nine groups based on the pattern

of their responses to horizontal and vertical stripes during

the 6-day alternate-orientation experiment. Surprisingly,

the numbers of cells that responded once, twice or three

times to one specific orientation, but never to the other ori-

entation (labeled as 1:0, 2:0, 3:0, respectively), were not

significantly different between the heterozygous and ho-

mozygous mice (Figure 6A, p > 0.05, t test, n = 12). By con-

trast, the numbers of cells that responded to both orienta-

tions (3:3, 2:2, 1:1, 3:2, 2:1 and 3:1) were significantly

higher in the homozygous than the heterozygous mice
Cell 126, 389–402, July 28, 2006 ª2006 Elsevier Inc. 393



Figure 3. Reliability and Experience Dependence of Arc-GFP Response

(A) A flow chart of behavioral stimulation and imaging procedures.

(B) The alignment of two-photon images taken from the superficial primary visual cortical layers in heterozygous Arc-GFP mice stimulated by the same

orientation on two consecutive days shows the reduction in the number of GFP+ neurons. The scale bar represents 30 mm.

(C) A gradual reduction in the number of GFP+ neurons in response to either horizontal or vertical stimulations. There is no significant difference

between the two orientations (p > 0.05), but experience has a significant effect (p < 0.0001, repeated measures two-way ANOVA, n = 6 regions,

two regions per animal, three mice in each orientation).
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Figure 4. Orientation Specificity of Arc-GFP Response

(A) The alignment of two-photon images taken from the superficial primary visual cortical layers in heterozygous Arc-GFP mice stimulated by hori-

zontal and vertical orientations on two consecutive days shows distinctive activation patterns of GFP+ neurons. The scale bar represents 30 mm.

(B and C) Orientation-specific activation of GFP+ neurons, as determined by the percentage of day 1 (B) or day 2 (C) GFP+ neurons that are reac-

tivated on successive days. Each data point is averaged from 12 regions in six mice.

(D) An example of a neuron that is only activated by horizontal orientation presented on alternate days. The scale bar represents 10 mm.

Error bars indicate SEM.
(Figure 6A, p < 0.05, t test with corrections for multiple

comparisons, n = 12). When the ratios of the numbers of

GFP+ cells in the homozygous versus the heterozygous

mice were plotted against the response groups that

were arranged approximately in the order of increasing

orientation selectivity (Figure 6B), the cells that responded
more promiscuously (3:3 and 2:2 groups) gave a mean

ratio of 3.5 or higher, while the cells that displayed high

orientation selectivity (1:0, 2:0, and 3:0 groups) showed

mean ratios close to one. The groups of cells that dis-

played intermediate levels of selectivity gave mean ratios

between 2 and 3.
(D) The reduction of neurons activated on each day depends on the repetition of the same visual experience. Mice were exposed to the same orien-

tation for 3 days, then to an orthogonal orientation on the fourth day. The number of GFP+ neurons activated on each day in each imaged region was

compared to that on day 1 as a ratio (n = 8 regions from four mice).

(E) A probability tree constructed from the activation history of neurons that have expressed GFP at least once during the 6 consecutive imaging days

in response to the same orientations. The first node represents the population of neurons that express GFP (labeled with ‘‘1’’) on day 1. The color-

coded lines connecting this node to its higher daughter nodes represent the proportion of neurons that are either reactivated (leftwards, ‘‘1’’) or in-

activated (rightwards, ‘‘0’’). Each daughter node is further split based on its activation pattern on the next day. The neurons in each node are pooled

from 12 regions in six mice.

(F) Neurons that are consistently activated before are more likely to be reactivated.

(G) Neurons that are consistently inactive before are more likely to remain silent.

(H) An example of a neuron that is activated on each of the six days. The scale bar represents 10 mm.

Error bars indicate SEM.
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Figure 5. Reduced Orientation Specificity of the Patterns of GFP+ Neurons in Arc Knockout Mice

(A) More GFP+ neurons are activated by a single orientation on day one in the homozygous than that in the heterozygous mice (n = 24 regions from 12

mice, p < 0.001, t test).

(B) The fluorescence intensity (I_cell/I_background, see Experimental Procedures) distribution of GFP+ neurons on day one. The number of neurons

observed at each intensity level was averaged from 24 regions. The dotted line indicates the intensity level where the peak of the distribution is

located, which is the same between the heterozygous and homozygous mice.

(C) More neurons were activated in the homozygous than the heterozygous mice on each day of the SAME orientation experiments, though a gradual

reduction of GFP+ neurons was still observed (n = 12).

(D and E) The dependence of neuronal reactivation probability on prior activation history was not significantly different between the heterozygous and

homozygous mice (repeated measures two-way ANOVA, p > 0.05, n = 12).

(F and G) Higher percentage of neurons was reactivated by the orthogonal orientations in the homozygous compared to the heterozygous mice in the

alternate-orientation experiments (***, p < 0.001, **, p < 0.01, t test with Bonferroni correction for multiple comparisons, n = 12).

All the error bars indicate SEM.
In order to determine whether these differences in the

numbers of GFP+ cells is due to a possible effect of Arc

(or its absence) on the level of GFP expression in individual

neurons, we examined the intensity distribution of GFP+

neurons in the heterozygous and homozygous mice. For

this purpose, we pooled cells that responded to both ori-

entations (3:3, 2:2, 1:1, 3:2, 2:1, and 3:1) into one group

(the low-orientation-specificity, or LOS, group), and cells

that responded to only one orientation (1:0, 2:0, and 3:0)

into another (the high-orientation-specificity, or HOS,
396 Cell 126, 389–402, July 28, 2006 ª2006 Elsevier Inc.
group), in order to obtain sufficient cell numbers at each

fluorescent intensity level. We observed no significant dif-

ference in the distribution of GFP+ cells across the whole

range of intensity levels in either the LOS or HOS groups

(Figures 6C and 6D). As expected, overall there were

more GFP+ cells in the homozygous than heterozygous

mice in the LOS group (Figure 6D) while no significant dif-

ference in the number of GFP+ cell was observed in the

HOS group (Figure 6C). The finding that the distribution

of GFP+ cells across the levels of GFP expression is not



Figure 6. Increased Numbers of GFP+

Neurons with Relatively Low Orientation

Specificity in Arc Knockout Mice

(A) GFP+ neurons were classified into nine

groups based on their response patterns to

horizontal or vertical stripes during the 6-day

alternate-orientation experiment. The numbers

of cells that responded once, twice, or three

times to one specific orientation (1:0, 2:0, 3:0)

were not significantly different between the

heterozygous and homozygous mice (p >

0.05, t test). By contrast, the numbers of cells

that responded to both orientations (3:3, 2:2,

1:1, 3:2, 2:1, and 3:1) were significantly higher

in the homozygous than the heterozygous

mice (t test with Bonferroni correction for multi-

ple comparisons, n = 12 regions; ***, p < 0.001;

**, p < 0.01; *, p < 0.05).

(B) The ratios of the numbers of GFP+ cells in

the homozygous versus the heterozygous

mice were plotted against the response groups

that were arranged approximately in the order

of increasing orientation selectivity. The ratios

were calculated using the average number of

cells from 12 regions in each genotype. Error

bars indicate standard deviation estimated by

bootstrap method.

(C and D) The fluorescence intensity distribu-

tions in groups with relatively high orientation

specificity (‘‘HOS’’, pooled from 1:0, 2:0, and

3:0 groups) and relatively low orientation spec-

ificity (‘‘LOS’’, pooled from 3:3, 2:2, 1:1, 3:2,

2:1, and 3:1 groups). The intensity level is the

average response of an activated neuron. The

number of neurons observed at each intensity

level was averaged from 12 regions in six mice.

All the error bars indicate SEM.
tilted toward the lower expression side suggests that the

increase in the number of GFP+ cells in the LOS group

of the homozygous mice is not due to a shift of cells with

GFP expression at levels just below the threshold of de-

tection to above the threshold.

Taken together, the lack of Arc in the homozygous mice

preferentially increases the number of GFP+ cells with rel-

atively low orientation specificity, and thereby reduces the

orientation specificity of the overall neuronal population.

Reduced Orientation Selectivity of Neuronal Spiking

Response in Arc Knockout Mice

To determine whether the reduced orientation specificity

of Arc-GFP activation patterns in the homozygous mice

correlates with a reduction in the orientation selectivity

of neuronal spiking responses, we conducted acute

extracellular single-unit recordings in the superficial layers

of the primary visual cortex of anesthetized wild-type, Arc
heterozygous and Arc homozygous mice. In wild-type

mice, individual neurons exhibited a wide range of selec-

tivity to oriented gratings (Figures 7A and 7B). In Arc ho-

mozygous mice, the distribution of the orientation selec-

tivity index was shifted toward low values (Figure 7B);

the median of the index was significantly lower than that

in the wild-type and the heterozygous mice (p < 0.001,

Kruskal-Wallis test). The magnitude of spiking responses

at the preferred orientations was not significantly different

among the three genotypes (p > 0.05, one-way ANOVA)

(Figure 7D), nor was the magnitude of spontaneous spik-

ing activities (wt 0.75 ± 0.16, het 0.49 ± 0.07, hom 0.52 ±

0.07, p > 0.05, one-way ANOVA). When individual neu-

rons’ response tuning curves were normalized and aligned

at their preferred orientations, then averaged across the

entire population, the resulting average orientation tuning

curve was broadened in the Arc homozygous mice (Fig-

ure 7C). Together, these electrophysiological data support
Cell 126, 389–402, July 28, 2006 ª2006 Elsevier Inc. 397



Figure 7. Reduced Orientation Selectivity of Neuronal Spiking Response in Arc Knockout Mice

(A) Examples of cells from wild-type mice that have high, medium, or low orientation selectivity, as determined by single-unit recordings. The back-

ground firing rate to a blank screen is indicated by the horizontal line in the linear plot.

(B) The cumulative distribution of the orientation selectivity index is shifted toward lower values in the homozygous compared to the wild-type and

heterozygous mice (p < 0.001, Kruskal-wallis test for group difference. WT, 6 mice, 108 cells; Het, 6 mice, 112 cells; Hom, 7 mice 123 cells. WT versus

Het, p < 0.001; Het versus Hom, p < 0.01; WT versus Het, p > 0.05, Wilcoxon ranksum test with Bonferroni correction for multiple comparisons).

(C) Average spike tuning curves from the wild-type, heterozygous and homozygous mice. Individual neurons’ tuning curves were normalized and

aligned to their preferred orientation before averaging.

(D) Themagnitudeof firing rate responsesatpreferredorientations were not significantly different among the threegenotypes (p> 0.05,one-way ANOVA).

All the error bars indicate SEM.
the conclusion that on average, neurons in Arc homozy-

gous mice are less selective for stimulus orientation.

DISCUSSION

An Arc-Dependent Mechanism for an Enhancement

of Orientation Specificity

In this study we have examined the orientation selectivity

of visual cortical neurons in wild-type, Arc-GFP heterozy-

gous and Arc-GFP homozygous mice using extracellular

single–unit recordings. We found that the percentage of

neurons with relatively low orientation selectivity was in-

creased in the homozygous mice (Figure 7B). While neu-

rons in the homozygous mice have normal average firing

response to their preferred orientation (Figure 7D), the

average orientation-tuning curve is broadened (Figure 7C).

Therefore, the presence of Arc protein in normal (i.e.,
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wild-type and heterozygous) mice seems to enhance the

overall orientation selectivity of visual cortical neurons.

It is conceivable that the broadening of average orienta-

tion tuning curve in the homozygous mice could be due to

an increased presence of neurons with low orientation

selectivity, a decreased presence of neurons with high ori-

entation selectivity, or a conversion of neurons with

high orientation selectivity to those with low orientation se-

lectivity. Through in vivo imaging of the activation patterns

of Arc-GFP positive neurons, we were able to differentiate

these possibilities. First, we showed that a single orienta-

tion activated a larger population of GFP+ neurons

(Figures 5A and 5B), and the percentage of GFP+ neurons

reactivated by orthogonal orientations increased in the

homozygous compared to the heterozygous mice (Fig-

ures 5F and 5G), consistent with the differences in average

orientation tuning curves (Figure 7C). Second, we found



that the numbers of Arc-GFP-expressing neurons with rel-

atively high orientation specificity were similar between

heterozygous and homozygous mice (Figures 6A–6C),

while the numbers of neurons with relatively low orienta-

tion specificity were significantly greater in the homozy-

gous mice (Figures 6A, 6B, and 6D). This difference in

the numbers of GFP+ cells is not due to an influence of

Arc on the level of GFP expression in individual neurons,

as suggested by the nearly identical distribution of GFP

intensity among the cells derived from the mice of the

two genotypes (Figures 6C and 6D). Instead, the lack of

Arc leads to more GFP+ cells in the population with rela-

tively low orientation specificity across the levels of GFP

expression (Figure 6D). These findings suggest that in

normal animals, Arc may act as a ‘‘molecular filter’’ to sup-

press the activation of a significant number of neurons with

relatively low orientation specificity, thereby enhancing the

overall orientation selectivity of visual cortical neurons.

Together, the single unit recording analysis and the in

vivo imaging data provide strong evidence to support

a novel physiological function of Arc in enhancing the

overall orientation specificity in visual cortex. Since Arc

is not expressed in primary visual cortex before eye open-

ing (around postnatal day 14 in mice), nor is it expressed in

the thalamus at any age (Lyford et al., 1995; Tagawa et al.,

2005), it is very unlikely that Arc is involved in the initial

establishment of orientation selectivity that occurs in an

experience-independent manner prior to eye opening.

The visual experience-dependent increase in orientation

selectivity occurs after eye opening (Chapman et al.,

1999). In parallel, Arc expression in visual cortex is rapidly

induced, which has been shown to be dependent on visual

experience (Lyford et al., 1995; Tagawa et al., 2005). Our

findings of reduced orientation selectivity in adult (2-4

months of age) Arc homozygous mice compared to the

age matched heterozygous mice (Figures 5–7) suggest

that Arc plays an important role during this post-eye open-

ing life of an animal.

It is interesting to note that orientation selectivity is also

reduced in NR2A and PSD-95 knockout mice (Fagiolini

et al., 2003). As the lack of NR2A, PSD-95 and Arc all re-

duce orientation selectivity in visual cortex and Arc pro-

moter activation is dependent on NMDA-receptor-medi-

ated synaptic inputs (Link et al., 1995; Lyford et al.,

1995; Steward and Worley, 2001b), it is possible that

NR2A and PSD-95 may be part of the signaling cascade

leading to Arc activation.

How Arc acts directly or indirectly to suppress the acti-

vation of neurons with low orientation specificity in normal

mice is a matter of speculation at this point. One possibility

is that Arc reduces the strength of synapses (Rial Verde

et al., 2003, Soc. Neurosci., abstract; Shepherd et al.,

2004, Soc. Neurosci., abstract) receiving visual inputs.

Another is that Arc raises the threshold of cell activation.

It is conceivable that either of these potential functions

of Arc would have a more pronounced effect on cells

with low orientation specificity with respect to suppres-

sion of activation, as these cells would, on average,
have weaker inputs from any of a number of orientations

that they respond to compared to the inputs that cells

with high orientation specificity would receive from the

specific orientation that they preferentially respond to.

Future in vivo studies at the subcellular level and tempo-

rally conditional knockout of Arc will be needed to further

elucidate its function.

An Arc-Independent Mechanism for Experience-

Dependent Adult Cortical Adaptation at the

Cellular Ensemble Level

We have observed that in alert adult animals neuronal en-

sembles expressing Arc-GFP become progressively

smaller but more reliable for reactivation with repetition

of the same visual experience (Figures 3C–3G). This find-

ing implicates a mechanism for experience-dependent

adult visual cortical adaptation at the cellular ensemble

level, and provides direct experimental evidence to sup-

port the idea that familiar information is compressed in

visual cortex after repeated experience (Tsodyks and Gil-

bert, 2004). Interestingly, although a larger cellular ensem-

ble with reduced orientation specificity was activated in

the Arc homozygous mice (Figures 5A–5C and 5F–5G),

the number of activated neurons still decreased and the

reliability of reactivation improved over repeated expo-

sures to the same stimuli (Figures 5C–5E). These findings

suggest that mechanisms independent of Arc control

these aspects of experience-dependent activation of neu-

ronal ensembles. For example, it would be interesting to

investigate in the future whether the level of global neuro-

modulators, such as acetylcholine and monoamines (Bao

et al., 2001; Weinberger, 2003), could affect the number of

reactivated neurons after repeated sensory exposure. In

addition, it remains to be studied whether competitive cir-

cuit-level mechanisms and/or adaptation in intracellular

signaling pathways would contribute to the improvement

of the reliability of Arc-GFP activation patterns.

Advantage of the Arc-GFP Imaging System in

Studying Experience-Dependent Changes

in Cortical Sensory Representations

Experience-dependent changes in cortical sensory repre-

sentations have been traditionally studied with electro-

physiological methods. However, it is difficult to record

from the same neurons over several days due to the drifts

of chronically implanted electrodes (Emondi et al., 2004).

On the other hand, random sampling of neurons with mi-

croelectrodes in separately operated animals introduces

undesired variations (Sengpiel et al., 1999). To overcome

these difficulties, visual fixation-based strategies have

been devised with monkeys to identify and compare

‘‘experienced’’ and ‘‘inexperienced’’ neuronal populations

in the same animal. Using this strategy enhanced orienta-

tion selectivity of neurons in the primary visual cortex of

monkeys has been reported after extensive practice of

an orientation identification task (Schoups et al., 2001).

However, the electrophysiological recordings in this study

were conducted only at the end of a month long training
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period, not on a daily basis, and the effects of repeated

visual experience on orientation selectivity had to be de-

duced by comparing the properties of two separately lo-

cated neuronal populations rather than by directly moni-

toring the changes in the activities of the same neuronal

populations.

Our Arc-GFP imaging system provides an alternative

method to overcome some of the limitations of these

electrophysiological methods, enabling direct and reliable

tracking of the response history of the same neurons upon

repeated stimulus presentations over multiple days (Fig-

ures 3 and 4), as well as offering a broader view of the

spatial distribution of activated neurons (Figure S5 in the

Supplemental Data available with this article online). Our

methods, however, relies on the expression of Arc pro-

moter-driven GFP as the indicator of cellular activation. It

has previously been shown that the expression patterns

of Arc mRNA as measured by in situ hybridization analysis

and place cell spiking patterns as measured by in vivo

multi-electrode recording correlated well for the activation

of hippocampal neuronal ensembles upon sequential ex-

posure (within 20 min) to two different environments (Gu-

zowski et al., 1999). Whether a similar relationship applies

in other brain regions under other behavioral conditions re-

mains to be demonstrated. Our finding that the reduced

orientation specificity of Arc-GFP activation patterns is as-

sociated with a reduced orientation selectivity of neuronal

spiking activities upon a loss of Arc function (Figures 5F,

5G, 7B, and 7C) provides a correlation between Arc gene

expression and neuronal spiking activity in visual cortex.

The expression of several other immediate early genes

such as c-fos and zif-268 have also been used in the liter-

ature as an indicator of activated neurons (e.g., Boehm

et al., 2005; Choi et al., 2005; Ferguson et al., 2001; Frank-

land et al., 2004). Although it remains to be shown how

neuronal spiking activity is mechanistically related to the

activation of these genes, previously published FosGFP

transgenic lines (Barth et al., 2004) could be used in a man-

ner similar to the Arc-GFP knockin lines used in this study

to track the dynamics of neuronal ensembles in vivo. The

combination of molecular genetics, in vivo optical imaging

and electrophysiology as applied in our current study pro-

vides a powerful approach to advance our understanding

of the cellular basis of experience-dependent changes in

sensory representations, and bridges the relationship

between genes and cognitions.

EXPERIMENTAL PROCEDURES

Generation of Knockin Mice

A 5.5 kb EcoRI/AflII segment of Arc genomic DNA was cloned from

a C57/BL6 mouse BAC library (Genomic Systems). A construct con-

taining d2EGFP (Clontech) followed by a Neo cassette was inserted

into the NdeI site right after the ATG start codon in the Arc gene. The

targeting plasmids were electroporated into a C57/BL6 ES cell line

(gift from Dr. Colin Stewart, National Institutes of Health), and homolo-

gous recombination was identified by Southern blot. The first 48 base

pairs of Arc ORF before the SacII site were deleted as a result of

recombination. The Neo cassette was not removed. ES cell clones
400 Cell 126, 389–402, July 28, 2006 ª2006 Elsevier Inc.
were injected into Balb/c blastocysts to derive chimeric mice.

Germline transmissions of targeting constructs in C57/BL6 mice were

identified by coat color and confirmed with Southern blot and PCR.

Mice were normally housed in groups under 12 hr light-dark cycles.

Each plastic cage includes a metal rack for water bottle and food pel-

lets. The floor was covered with saw dust and cotton bedding. The light

level in the cages was approximately 250 lux. Both heterozygous and

homozygous mice were viable and fertile, without overt behavioral ab-

normality. (There was an earlier report of embryonic lethality in a homo-

zygous Arc knockout mouse line (Liu et al., 2000), but that line was gen-

erated differently from a 129/Sv ES cell line.) The loss of Arc mRNA

expression in homozygous mice was verified by RT-PCR analysis of

brain total RNA preparations, using primers corresponding to both

N- and C- terminal coding regions. The loss of Arc protein in homozy-

gous mice was confirmed with both Western blot of brain homoge-

nates (Santa Cruz Biotechnology, rabbit polyclonal antibody against

the N-terminal 300 aa. of Arc) and immunofluorescent staining on fixed

brain sections (Santa Cruz Biotechnology, goat polyclonal antibodies

against the N- and C-terminals of Arc). The expression levels of Arc

protein in brain extracts from wild-type and heterozygous littermates

were quantified using LICOR’s Infrared Western blot imaging system.

Linear response ranges were found by serial dilution, then Arc protein

level was normalized against the protein level of house keeping en-

zyme GAPDH, and compared between littermates. GFP immunofluo-

rescent staining was conducted with an anti-GFP antibody (Abcam)

on fixed brain sections.

Surgical Preparation

Arc-GFP mice at the age of 2–3 months were surgically implanted with

transparent cranial windows over the primary visual cortex (Majewska

and Sur, 2003) (Supplemental Experimental Procedures). After sur-

gery, mice were allowed to recover for at least two weeks before visual

stimulation and imaging experiments. The animals’ care was in accor-

dance with M.I.T. institutional guidelines.

Visual Stimulation

The visual environment to which Arc-GFP mice were exposed con-

sisted of an acrylic cylinder (30 cm in diameter and 60 cm high) lined

with alternate black and white stripes (2 cm in width) on the wall. The

light level in the cylinder is approximately 250 lux. Mice were trans-

ferred in and out of the cylinder in complete darkness by the experi-

menter wearing infrared goggles.

Two-Photon Microscopy

Two-photon microscopy was performed using a custom built system

(Majewska et al., 2000) (Supplemental Experimental Procedures).

Laser power was adjusted to the same level (approximately 75 mW)

from day to day. Before imaging, each mouse was anesthetized in

the dark with isoflurane (4% for induction and 2% for maintenance).

It was then transferred onto the microscope stage, with its head fixed

using the implanted metal bar to a metal base that connected directly

into the microscope stage. A mixture of isoflurane and oxygen was de-

livered continuously to the mouse through a nose cone. Body temper-

ature was maintained using a heating pad.

For each mouse, we routinely collected two separate image stacks

with dimensions of 300 3 400 3 200 mm (width 3 length 3 depth) in

different areas of V1. The spacing of vertical planes is 5 mm. A typical

pyramidal neuron has a diameter of about 10 mm in horizontal dimen-

sion and is slightly elongated in the vertical dimension, so that it is sec-

tioned by two to three optical planes.

Image Analysis

To process tens of thousands of images and to reduce potential exper-

imenter bias, we developed an automatic image analysis algorithm

(Supplemental Experimental Procedures). To locate individual GFP-

expressing cells on each image frame, we used the Difference-of-

Gaussian filter (Marr and Hildreth, 1980) to extract signals of one-cell



diameter (20 pixels or 10 mm) from their surrounding background

(Figure S1). Typically, there were 5–20 visually identified GFP+ cells

per image (600 3 800 pixels), and the area of each cell was approxi-

mately 300 pixels. Therefore, only 1.25% (20 3 300/600/800) or less

of an image was occupied by GFP+ cells, and most pixels in the filtered

image had intensity values varying around zero. The median of the ab-

solute intensity variations in the filtered image was calculated to derive

a robust estimator of the standard deviation (SD) of the background

noise (Huber, 1981). The 3D coordinates of local intensity peaks above

4.6 3 SD were identified in the filtered images, and only the one with

the highest intensity value for each cell position was used to represent

the center of an activated cell expressing GFP. Therefore, each GFP-

expressing cell was only counted once in the 3-D image stacks.

We set the threshold for cell detection at 4.6 3 SD to minimize false-

positive rates. Based on Gaussian random field theory that has been

widely applied in medical imaging research (Worsley et al., 1992),

the average number of false positive peaks at this threshold is below

0.05 per filtered image, less than 1% (0.05/5) of the number of GFP+

cells per image. After setting this threshold, we confirmed that the

intensity distribution of randomly sampled GFP- spots was well sepa-

rated from that of all the GFP+ neurons in the imaged region

(Figure S2D). We also compared the automatic cell detection algorithm

to human manual counting and found that 94% (1569/1666) of cells de-

tected by a human observer blind to the experimental parameters were

captured by the algorithm.

To further examine the robustness of the orientation-specific neuro-

nal reactivation curves in the heterozygous and homozygous Arc-GFP

mice (Figures 5F and 5G), we analyzed our whole data set using vari-

ous threshold values for automatic cell detection. The results showed

that the shapes of the reactivation curves were robust across a range

of threshold choices (from 4.0 3 SD to 7.0 3 SD, Figure S8).

To quantify the fluorescent intensity of an identified GFP+ cell, we

first defined a cell area that included all the pixels with intensity levels

higher than half of the peak intensity value and within 15 pixels from the

center (Figure S2A). The mean pixel intensity in the cell area is calcu-

lated as I_cell. A background area was defined as a ring between 15

and 20 pixels from the center. If a part of a neighboring cell was located

in the background area, that area was excluded from calculation. The

mean pixel intensity in the background area is calculated as I_back-

ground. The GFP intensity signal of a cell was calculated as I_cell/

I_background. The denominator normalized the GFP signal against

background variations in laser power or tissue light-scattering proper-

ties (Jähne, 2002). We have also quantified I_background and I_cell us-

ing alternative size and shape definitions, and obtained similar intensity

distributions (Figure S9).

Images belong to the same time series were first aligned at the mi-

croscope stage, using idiosyncratic vasculature patterns and stable

auto-fluorescent signals (Grutzendler et al., 2002; Trachtenberg et al.,

2002). Further refinement was conducted after image acquisition using

3D affine transformation. Cell centroids calculated from different time

points were merged if they were within one cell diameter of each other.

In Vivo Electrophysiology

Wild-type, heterozygous, and homozygous Arc-GFP mice (3–4

months old) were prepared for extracellular microelectrode recordings

following procedures adapted from published reports (Gordon and

Stryker, 1996) (Supplemental Experimental Procedures). Single-unit

recordings were conducted with tungsten microelectrodes (2–4 MU

resistance, FHC) as previously described (Dragoi et al., 2000). For

each animal, we recorded approximately 15–20 cells in four or five

penetrations in the superficial layers (less than 350 mm from pial sur-

face) of primary visual cortex. High-contrast square wave gratings

were presented to anesthetized mice on a computer monitor at orien-

tations 22.5� apart with a spatial frequency of 0.05 cycle/degree and

a temporal frequency of 3 Hz. During each trial, all 16 gratings and

a blank screen of uniform intermediate gray were randomly inter-

leaved, and presented for 2 s each, with 500 ms intervals between
each stimulus. In total 10 trials were presented to each cell. Firing

rate responses to each orientation were averaged from those trials,

and spontaneous activity was subtracted. The orientation selectivity

index (OSI) was calculated using a vector averaging method, and the

preferred orientation was determined from the angle of the mean orien-

tation vector (Dragoi et al., 2000).

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

nine figures, and Supplemental References and can be found with

this article online at http://www.cell.com/cgi/content/full/126/2/389/

DC1/.
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