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SUMMARY

The cognitive symptoms of schizophrenia presum-
ably result from impairments of information process-
ing in neural circuits. We recorded neural activity in
the hippocampus of freely behaving mice that had
a forebrain-specific knockout of the synaptic plas-
ticity-mediating phosphatase calcineurin and were
previously shown to exhibit behavioral and cogni-
tive abnormalities, recapitulating the symptoms of
schizophrenia. Calcineurin knockout (KO) mice
exhibited a 2.5-fold increase in the abundance of
sharp-wave ripple (SWR) events during awake
resting periods and single units in KO were overac-
tive during SWR events. Pairwise measures of unit
activity, however, revealed that the sequential reac-
tivation of place cells during SWR events was
completely abolished in KO. Since this relationship
during postexperience awake rest periods has been
implicated in learning, working memory, and subse-
quent memory consolidation, our findings provide a
mechanism underlying impaired information pro-
cessing that may contribute to the cognitive impair-
ments in schizophrenia.

INTRODUCTION

Cognitive disorders such as schizophrenia are associated with

multiple genetic and environmental factors but presumably

involve systematic impairments of information processing in

specific neural circuits. Animal models can provide insight into

such disorders by associating impairments at a behavioral level

with disruption of distinct mechanisms at a neural circuit level

(Arguello and Gogos, 2006). Furthermore, the ability to monitor

the activity of individual neurons is a key advantage of using an-

imal models. However, very little previous work has examined

neural information processing in such models. In this study, we

applied high-density electrophysiological recording techniques
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to investigate information processing at a circuit level in a mouse

model of schizophrenia.

We previously generated a mouse model that offered three

features: first, altered synaptic plasticity; second, a profile of

behavioral impairments recapitulating those seen in schizo-

phrenia patients; and third, an association of the mutated gene

with schizophrenia (Gerber et al., 2003; Gerber and Tonegawa,

2004; Miyakawa et al., 2003; Zeng et al., 2001). Specifically,

mice with a forebrain-specific knockout (KO) of the only regula-

tory subunit of calcineurin, a major phosphatase expressed in

the brain, are severely deficient in long-term depression (LTD)

at hippocampal synapses, while long-term potentiation (LTP) is

mildly enhanced (Zeng et al., 2001), leading to a leftward shift

in the BCM curve (Dudek and Bear, 1992). The KO mice exhibit

a comprehensive array of behavioral impairments characteristic

of schizophrenia patients (Elvevåg and Goldberg, 2000; Gold-

man-Rakic, 1994), including impairments in latent inhibition, pre-

pulse inhibition, and social interaction (Miyakawa et al., 2003), as

well as a severe deficit in working memory (Zeng et al., 2001).

Furthermore, the mutated calcineurin gene (PPP3CC) has been

shown to map to chromosomal loci previously implicated in

schizophrenia by genetic linkage studies (Gerber et al., 2003).

Taken together, these features suggest that the calcineurin KO

provides a unique opportunity to investigate the neural basis of

dysfunction in a schizophrenia model.

The hippocampus is a brain structure critical for episodic

memory (Gaffan, 1994; Olton and Samuelson, 1976; Scoville

and Milner, 1957; Steele and Morris, 1999) and spatial learning

(Morris et al., 1982; O’Keefe and Nadel, 1978). In freely moving

rodents, the hippocampus exhibits distinct activity profiles

dependent on behavioral state (Buzsáki, 1989), suggesting

distinct modes of information processing within the structure.

During running, the hippocampal electroencephalogram (EEG)

exhibits a 4–12 Hz theta rhythm (Skaggs et al., 1996), and hippo-

campal principal neurons exhibit location-specific responses,

known as place fields, as reported in rats (O’Keefe and Dostrov-

sky, 1971), mice (McHugh et al., 1996), monkeys (Matsumura

et al., 1999), and humans (Ekstrom et al., 2003). By contrast, dur-

ing awake rest periods, hippocampal EEG is distinguished by

sharp-wave-ripple (SWR) events (Buzsáki, 1989) and hippocam-

pal principal neurons take part in extended sequences of
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coactivity, which replay previous behavioral episodes (Davidson

et al., 2009; Diba and Buzsáki, 2007; Foster and Wilson, 2006;

Gupta et al., 2010) as well as preplay subsequent behavioral ep-

isodes (Dragoi and Tonegawa, 2011, 2013; Pfeiffer and Foster,

2013).

There is substantial evidence linking schizophrenia with dam-

age to the hippocampus (Weinberger, 1999). Dysfunction of the

hippocampus and related medial temporal lobe structures has

also been reported in schizophrenia patients (Small et al.,

2011), together with selective impairments in learning and mem-

ory. In addition, abnormal brain activity in schizophrenia patients

has been detected in various brain structures, including the hip-

pocampus, during rest periods (Buckner et al., 2008) and during

passive task epochs (Harrison et al., 2007). Since the pattern

of impairments of calcineurin KO mice—synaptic plasticity

changes in the hippocampus and hippocampal-dependent

behavioral phenotypes such as working memory—suggested

that hippocampal functionmight be affected in thismousemodel

of schizophrenia, we targeted the hippocampus for electrophys-

iological recordings in freely behaving KO and littermate controls

(CT) and investigated changes in information processing during

exploratory behavior and resting periods.

RESULTS

To characterize hippocampal activity in our mouse model, we

employed microdrives with multiple independently adjustable

tetrodes to record single-unit spikes and EEG from the CA1 sub-

region of the dorsal hippocampus of freely behaving KO mice

(n = 7) and floxed littermate CT (n = 5).

Overabundance of SWRs in Calcineurin KO Mice
We hypothesized that the bias toward enhanced synaptic

strength in KO would lead to an increase in excitability in hippo-

campal circuits. We therefore analyzed hippocampal EEG in

KO and CT during both running and awake, nonexploratory

periods. During immobility, both groups exhibited SWRs,

defined as increases in amplitude in the ripple frequency band

(100–240 Hz), and typically lasting up to hundreds of millisec-

onds (Figure 1A). However, the non-Z-scored EEG in KO

exhibited a significant increase in ripple power compared to

CT (Mann-Whitney, p < 0.05; Figure 1B). By contrast, there

was no increase in power in either the gamma band (25–

80 Hz; Mann-Whitney, NS; Figure 1C) during nonexploratory

period or theta band (4–12 Hz; Mann-Whitney, NS; Figure 1D)

frequency during run.

To investigate further the specific increase in ripple-related

activity, we quantified the characteristics of SWR events. No

change was found in the duration (CT: 88.35 ± 3.6 ms; KO:

88.36 ± 2.42 ms; F(1, 10) = 1.17e-5, NS) or Z-scored amplitude

(CT: 7.06 ± 0.32 SD; KO: 7.72 ± 0.12 SD; F(1, 10) = 4.8, NS) of

SWRs. The abundance of SWRs, however, was 2.5 times greater

(F(1,10) = 31.7, p < 0.001; Figure 1E). We then varied our analysis

parameters in order to test how robust the results were. Varying

the SWR detection threshold, in standard deviations from the

mean, we found a consistent effect as the amplitude threshold

was increased (Figure 1F). Indeed, at 8 standard deviations,

the number of SWRs was a full order of magnitude greater in
KO than CT.We further conducted a robustness analysis varying

the frequency range for which events were defined, for a 50 ms

window, varied from 50 Hz to 600 Hz in 10 Hz steps (Figure 1G).

There were significantly more events over a wide range of fre-

quencies, between 100 Hz and 480 Hz (all windows in the range

were significant at p < 0.05, two-sample t test); however, the

most significant zone was between 120 Hz and 150 Hz (all win-

dows in this range were significant at p < 0.001, two-sample

t test). This range matched the frequency of peak ripple power

(CT: 149.8 ± 5.3 Hz; KO: 143.4 ± 4.4 Hz; F(1,10) = 0.83, NS; Fig-

ure 1B). Taken together, these results indicate that calcineurin

KO exhibit higher excitability in the EEG during immobility,

whereas EEG activity associated with active exploration does

not appear to be affected.

Normal Place Fields in Calcineurin KO during
Exploratory Behavior
Across multiple species, hippocampal pyramidal neurons are

active in spatially restricted regions of an environment during

exploration, a pattern of activity referred to as place fields

(Ekstrom et al., 2003; Matsumura et al., 1999; McHugh et al.,

1996; O’Keefe and Dostrovsky, 1971; Wilson and McNaughton,

1993). Given the great increase in ripple activity in the EEGduring

rest periods and the overall shift in synaptic plasticity toward

potentiation (Zeng et al., 2001), we next hypothesized that higher

excitability in KO would be manifested in the activity of individual

neurons. We therefore isolated single-unit activity in large

numbers of pyramidal neurons simultaneously recorded from

CA1 during running (total cells: CT: n = 59, KO: n = 122; simulta-

neously: CT: 11.8 ± 1.0 cells per mouse; KO: 17.4 ± 2.1 cells per

mouse; Figure 2A) and analyzed units (CT: n = 48; KO: n = 92) with

significant activity on the track (place field peak > 1 Hz). Fine

quantification revealed no differences in these responses across

multiplemeasures (Figure 2; see also Figure S1). Specifically, sin-

gle units in KO exhibited normal place field sizes (F(1,138) = 0.01,

NS; Figure 2B), normal firing rates within place fields (F(1,138) =

0.56,NS; Figure 2C), no difference in the normal tendency of units

to fire more in one direction than another (F(1,138) = 0.19, NS;

Figure 2D), and no difference in sparsity (F(1,138) = 0.85, NS; Fig-

ure 2E),which is ameasure of the localization of place fields (Jung

et al., 1994). In addition, no difference was observed in spatial in-

formation index (F(1,138) = 0.02, NS; Figure 2F), whichmeasures

how informative about position a spike from a place cell is (Mar-

kus et al., 1994), and spatial coherence (F(1,138) = 0.92, NS; Fig-

ure 2G), which measures the local smoothness of a firing rate

pattern of spikes (Muller and Kubie, 1989).

Next, to determine whether excitability might be evident in the

precise timing of single spikes, we further examined run-time unit

activity on a finer timescale. Since hippocampal single units

exhibit complex spikes, made up of a burst of several spikes

occurring 2–10 ms apart (Quirk and Wilson, 1999), we first

measured the number of spikes during bursts. Both KO and

CT units exhibited similar numbers of spikes per burst

(F(1,142) = 0.01, NS; Figure 2H) and a similar percentage of burst

spikes (F(1,142) = 0.40, NS; Figure 2I). Interestingly, however, we

found that bursts in KO tended to be faster, as measured by

burst interspike interval (CT: 5.70 ± 0.70 ms; KO: 4.99 ±

0.78 ms; F(1,142) = 29.16, p < 10�6; Figure 2J), and extracellular
Neuron 80, 484–493, October 16, 2013 ª2013 Elsevier Inc. 485
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Figure 1. Increased Hippocampal Ripple Activity in Calcineurin KO Mice during Awake Resting Periods

(A) Examples of EEG recording from CT (left) and KO (right) mice. Each EEG trace is shown as z-scored raw EEG (top), envelope of smoothed ripple-band-filtered

EEG (middle), and wavelet power spectrogram of raw EEG (bottom). Note that sharp waves and their associated ripples are clearly isolated events in this

spectrogram.

(B and C) Comparison of spectral power of EEG filtered at ripple (B, 100–240 Hz) and gamma (C, 25–80 Hz) frequency bands.

(D) Comparison of spectral power of z-scored raw EEG filtered at theta (4–12 Hz) band during run.

(E) Comparison of ripple abundance during awake resting period. ***p < 0.001.

(F) Quantitative measurement of ripple abundance at different threshold factors (standard deviations of z-scored, smoothed, and filtered EEG). *p < 0.05;

***p < 0.001.

(G) The abundance of EEG events measured by a 50 Hz frequency window that filtered raw EEG at different frequency bands. Data are represented as mean ±

SEM (shaded area in B, C, D, and G).

Neuron

Impaired Replay in a Mouse Model of Schizophrenia
spike amplitude attenuation, which is associated with complex

spikes (Harris et al., 2001; Quirk and Wilson, 1999), was also

increased in KO (CT: 2.84% ± 0.39%; KO: 5.93% ± 0.38%;

F(1,142) = 31.36, p < 10�6; Figure 2J). Taken together, these re-

sults indicated that the spatial representation at the level of sin-

gle cells in KO appears to be preserved during exploratory

behavior, in spite of the bias toward enhanced synaptic strength,

with little change in spike timing during bursts.
486 Neuron 80, 484–493, October 16, 2013 ª2013 Elsevier Inc.
Overactivity of Place Cells in Calcineurin KO during
SWRs
Since the place responses of single units in calcineurin KO

were largely normal during run, we next examined whether

unit activity during immobile periods, specifically SWRs, was

also unaltered. In both KO and CT mice, single units exhibited

spikes during SWR events (Figure 3A). Place cells in KO,

however, fired more than double the number of spikes during



A

E

OKTC

0

20

40

60

P
la

ce
 F

ie
ld

 (c
m

)

CT KO

50

30

10

0

0.2

0.6

1.0

D
ire

ct
io

na
lit

y

0.8

0.4

CT KO

S
pi

ke
s 

pe
r B

ur
st

 p
er

 C
el

l

0

2

4

3

1

CT KO

P
er

ce
nt

ag
e 

of
 S

pi
ke

s 
in

 B
ur

st

B C D

F G

H

2 4 6 8
-14

-10

-6

-2

2

ISI (msec)

A
m

pl
itu

de
 D

iff
er

en
ce

 (%
)

KO
CT

2.9 10.2 6.2 2.5 5.7 3.0 2.9 8.8

In
-fi

el
d 

Fi
rin

g 
R

at
e 

(H
z)

0

2

4

3

1

CT KO

S
pa

rs
ity

0

0.4

0.8

0.6

0.2

CT KO
0

0.4

0.8

1.2

In
fo

rm
at

io
n 

(b
its

/s
ec

)

CT KO

1.0

0.6

0.2

0

0.1

0.3

0.5

C
oh

er
en

ce

0.4

0.2

CT KO

0

20

40

60

CT KO

50

30

10

I J

Figure 2. Similar Basic Properties of Place

Cells in CT and KO Mice in Run Periods

(A) Examples of color-coded firing rate maps of

CA1 place cells during run on a 10 3 76 cm linear

track. Peak firing rates in Hz are shown above each

rate map.

(B–G) Quantitative description of place fields of CT

and KO mice: (B) size of place field, (C) mean in-

field firing rate, (D) directionality, (E) sparsity, (F)

spatial information, and (G) spatial coherence.

(H–J) Quantification of spike activity during burst:

(H) number spikes per burst per cell, and (I) the

proportion of spikes, which were burst spikes, per

cell. Data are represented as mean ± SEM. (J) The

percentage of attenuation in spike amplitude

within bursts as a function of in-burst inter-spike

interval (ISI) for each cell (CT: 48 cells; KO: 97

cells). Blue and red line indicate linear regression

for CT and KO, respectively.
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each SWR event as compared to those in CT (CT: 1.11 ± 0.14

spikes per SWR; KO: 2.56 ± 0.54 spikes per SWR; F(1,81) =

4.84, p < 0.05; Figure 3B). Given that SWR events were also

more abundant in KO mice (Figure 1E), the increased spikes

per SWR further increased excitability in KO mice during

rest periods. Specifically, the separate effects of increased

spiking activity in SWRs (spikes/ripple) and increased abun-
Neuron 80, 484–493,
dance of SWRs (ripples/second) jointly

resulted in an increase in the overall

number of SWR spikes fired during

rest periods (spikes/second). Indeed,

KO displayed a six-fold increase in the

number of SWR spikes during rest pe-

riods compared to CT (CT: 0.10 ± 0.02

spikes/s; KO: 0.62 ± 0.13 spikes/s,

F(1,78) = 13.40, p < 0.0005; Figure 3C).

In principle, this increase in spiking

activity may not by itself imply an alter-

ation in the organization of information

during each SWR. For example, the

patterns of spikes associated with

SWRs might be preserved, while being

both enhanced and more frequent.

However, such a possibility requires

that the identity of cells participating in

SWRs would not be altered. Alterna-

tively, overexcitability during SWRs

might lead to a degradation of SWR-

associated information. To address this

issue, we further analyzed the participa-

tion of single units across different

SWRs. We found that single units in KO

participated in a significantly greater

fraction of SWR events than CT,

increasing from around a third of SWRs

to over half (CT: 35.39% ± 3.44%;

KO: 54.47% ± 4.00%; F(1,86) = 11.63,

p < 0.001; Figure 3D). This finding indi-
cates that neurons in KO were active during more than the

optimal number of SWR events, raising the possibility that

spikes in KO may add noise rather than signal to SWR

events. Therefore, we analyzed the coactivity of simulta-

neously recorded units during SWRs and determined whether

and how the information content of SWRs was affected in

calcineurin KO.
October 16, 2013 ª2013 Elsevier Inc. 487
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Figure 3. Increased Spike Activity of Place Cells in Calcineurin KO Mice during Ripple Events

(A) A representative train of spikes is displayed with simultaneously recorded EEG filtered in ripple frequency range, for CT and KO. Ripple events are highlighted

in red.

(B) The number of spikes per SWR event, per cell (over all cells that fired at least one spike during at least one SWR event). *p < 0.05.

(C) The number of SWR spikes per second of awake resting period, per cell. ***p < 0.001.

(D) The fractional participation in SWRs, i.e., the fraction of SWR events for which a cell fired at least one spike, averaged across all cells. ***p < 0.001. Data are

represented as mean ± SEM.
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Abolished Spatial Information Content of Reactivation
Events in Calcineurin KO
It has been demonstrated that awake SWR events are associ-

ated with temporally sequenced activity patterns of hippocam-

pal place cells, referred to as ‘‘replay’’ due to the resemblance

to spatial activity patterns in prior behavioral experience (David-

son et al., 2009; Diba and Buzsáki, 2007; Foster and Wilson,

2006; Gupta et al., 2010; Karlsson and Frank, 2009). It has also

been shown that SWR events are associated with consolidation

of previously encoded memory (Ego-Stengel and Wilson, 2010;

Girardeau et al., 2009; Nakashiba et al., 2009), with encoding

of a novel experience (Dragoi and Tonegawa, 2011; Dragoi and

Tonegawa, 2013), and, more interestingly, with spatial working

memory (Jadhav et al., 2012) and the planning of future behav-

iors (Pfeiffer and Foster, 2013). Therefore, we hypothesized

that temporal sequences of place cells associated with SWRs

in KO may be affected. Since sequential replay suggests a

distinct relationship between pairs of simultaneously recorded

place cells, in which the distance between the cells’ place fields

(measured using their peaks) should correlate with the temporal

spike separation between cells during SWRs (Karlsson and

Frank, 2009), we applied this analysis to pairs of simultaneously

recorded place cells in KO andCTmice.We first noted thatmean

interspike intervals between pairs of cells were significantly

shorter in KO than CT (CT: 82.58 ± 7.32 ms; KO: 29.3 ±

2.03ms; F(1,428) = 80.46, p < 10�17). This result is in accordance

with the general increase in spike rates during SWRs noted
488 Neuron 80, 484–493, October 16, 2013 ª2013 Elsevier Inc.
earlier. We then considered the relationship between place field

distance and temporal spike separation for pairs of cells. We

created a representation of activity across the population by

generating cross-correlograms of spike trains during SWRs for

each pair of cells and then imaging each correlogram as a color-

ized row vector positioned on the y axis at a height correspond-

ing to the distance between the place fields of those cells. When

two or more correlograms occupied the same distance value,

they were averaged together. In CT, this analysis revealed a

distributed ‘‘V’’-like pattern indicative of a replay-like relation-

ship, as has been reported in rats (Karlsson and Frank, 2009)

(Figure 4A, left). Strikingly, in contrast, the pattern was very

different for KO, with a tight concentration around the null relative

spike timing at all distances (Figure 4A, right).

Next, to verify whether the abnormal pattern in the correlo-

gram in KOmice indicated a fundamentally disordered organiza-

tion at the level of pairs of cells, wemeasured the mean temporal

spike separation for each pair of cells, thus considering each pair

of cells as a tuple of place field distance and mean spike separa-

tion (Figure 4B). There was a clear and significant positive corre-

lation between place field distance and temporal spike separa-

tion in SWRs among cell pairs in CT (r = 0.21, F = 6.65, p <

0.01), indicating that hippocampal unit activity during SWRs

conveyed temporally structured information about the spatial

distance of place fields. By contrast, the relationship between

cell pairs in KO was completely abolished (r = �0.007, F =

0.015, NS). We also further quantified these pairwise effects by
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Figure 4. Impaired Reactivation of Spatial Experience on the Linear Track during Awake Resting Periods on the Linear Track in Calcineurin

KO Mice

(A) For each pair of neurons, the pairwise cross-correlogram of the two spike trains around ripple events (±300 ms) is plotted at a y position given by the linear

distance between the corresponding two place field peaks. Wherever more than one pair occupies the same y position (i.e., has the same interpeak spatial

distance), the cross-correlograms have been averaged. Pairwise data from all sessions are shown together on the left for CT and on the right for KO.

(B) Distribution of temporal spike separations during ripples of all pairs of neurons is plotted as a function of the distance between place field peaks on the track.

(C) Comparison of the average spike separation for pairs of cells with place field peaks less than 10 cm apart (close pairs) and pairs of cells with place field peaks

more than 40 cm apart (far pairs). ***p < 0.001.

(D–F) For KOmice, the reactivation assessment shown in (B) was reanalyzed while only extra spikes (D), only extra ripples (E), or both extra spikes and ripples (F)

were randomly decimated. Data are represented as mean ± SEM.
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binning the data into ‘‘close’’ and ‘‘far’’ categories on the basis of

the distance between place fields in a pair. Specifically, pairs of

cells with place field peaks less than 10 cm apart were catego-

rized as ‘‘close,’’ whereas pairs of cells with place field peaks

more than 40 cm apart were categorized as ‘‘far.’’ CT exhibited

a strong difference between these categories (F(1,76) = 8.94,

p < 0.01; Figure 4C, left), whereas KO exhibited no difference

at all (F(1,194) = 0.22, NS; Figure 4C, right). Furthermore, in order

to compare CT and KO and assess the consistency of our find-
ings across subjects, we analyzed the effects of genotype and

condition (‘‘close’’ versus ‘‘far’’) on the temporal separation of

SWR spikes, with subject as a random factor nestedwithin geno-

type (see Experimental Procedures). We found significant effects

of genotype (F(1,201) = 15.1, p < 0.01), condition (F(1,201) = 8.15,

p < 0.02), and the interaction between them (F(1,201) = 7.36, p <

0.02), but no effect of subject (F(10,201) = 2.0, NS) or interaction

between subject and condition (F(7,201) = 1.75, NS), thus

demonstrating that KO and CT mice differed significantly and
Neuron 80, 484–493, October 16, 2013 ª2013 Elsevier Inc. 489



Neuron

Impaired Replay in a Mouse Model of Schizophrenia
consistently across subjects. Finally, the correlation coefficients

across individual micewere different between KO andCT (z-test,

Z = 2.15, p < 0.05), thus demonstrating that the relationship be-

tween place fields and spike times was consistently disrupted

across KO mice.

Since the increased abundance of SWRs and increased num-

ber of spikes during SWRs can contribute to the abolished

spatial information content in KO, we further repeated the above

analyses under three control-matching manipulations (for

conciseness, we state only the interaction between genotype

and condition, and the comparison of correlation coefficients).

First, to exclude the possibility of the effect of the increase in

spike numbers in KO having an effect, we randomly decimated

spike numbers from spike trains to match their average quantity

equal to CT spikes (Figure 4D; 3-way nested ANOVA, F(1) = 5.21,

p < 0.05 and z-test, Z = 2.66, p < 0.01). Second, to exclude a pos-

sibility of the effect of the increase in SWR abundance in KO hav-

ing an effect on abolished spatial information content, we

randomly decimated the number of SWR events (Figure 4E;

3-way nested ANOVA, F(1) = 7.74, p < 0.05 and z-test, Z =

2.53, p < 0.05). Finally, we combined both decimations to

analyze cell pairs in KO under the same SWR abundance and

spike rates as CT (Figure 4F; 3-way nested ANOVA, F(1) =

11.14, p < 0.01, and z-test, Z = 2.33, p < 0.05). In all three condi-

tions, the two main factors were also significant, but the nested

factor (subject) and its interactionwith condition were not. There-

fore, neither increased abundance nor increased spike rate by

themselves account for the failure of cell pairs in KO to exhibit

normally structured coactivity, but rather the fundamental rela-

tionship between spike times during SWRs and represented

place fields during run has been completely abolished in KO.

DISCUSSION

We applied high-density electrophysiology recording to amouse

model of schizophrenia, in which functional calcineurin protein is

deleted specifically in excitatory neurons from the forebrain. Our

primary aimwas to detect disruption of information processing in

the hippocampus, which may underlie the schizophrenia-like

behavioral impairments of the model mice. We demonstrated

that calcineurin KO mice displayed a selective disruption in

rest-related neural information processing. Hippocampal EEG

in KO exhibited enhanced power in the ripple band, but not

gamma or theta, and a 2.5-fold increase in the abundance of

SWR events during awake resting periods. This abnormality

was strikingly selective, since CA1 neurons in KO exhibited

normal place fields during active exploratory behavior. By

contrast, the same neurons were profoundly overactive during

SWRs and participated in a greater fraction of SWR events.

Furthermore, pairwise measures of unit activity during SWRs re-

vealed that a normal linear relationship between spatial separa-

tion of place fields during run and temporal separation of spikes

during resting periods was completely abolished in KO. Thus, we

present a novel form of disruption of neural information process-

ing in an animal model of schizophrenia.

What mechanism might underlie the increase in SWRs in KO

mice? The shift in plasticity away from LTD and toward LTP

(Zeng et al., 2001) would suggest an increase in excitability,
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which may produce an increase in the SWR number. In support,

an electrophysiological study of CA1-CA3 slices producing

spontaneous SWRs demonstrated that SWR abundance in-

creases after LTP induction and that this effect is dependent

on NMDA receptors (Behrens et al., 2005). Next, how can the

plasticity shift in KO mice affect the temporal organization of

place cell activity during SWRs? Several models have proposed

that synaptic plasticity occurring during exploratory running

behavior may drive associations between successively active

place cells and sculpt the sequences that can be subsequently

generated (Jensen and Lisman, 1996; Levy, 1996; Mehta et al.,

2002). Synaptic plasticity that is excessive and unbalanced to-

ward potentiation in calcineurin KO might cause excessive tem-

poral binding between place cells during running behavior,

despite the fact that the activity of the place cells during running

is normal. Hence, this excessive temporal binding would then be

manifested during the information retrieval process associated

with SWRs.

Our results suggest that information processing during awake

resting periods may play a critical role in normal brain function.

Recently, there has been increasing interest in resting-state

brain function and a related set of brain regions known as the

‘‘default mode network’’ (DMN), including the hippocampal for-

mation as well as posterior cingulate cortex, retrosplenial cortex,

and prefrontal cortex (Broyd et al., 2009; Buckner et al., 2008;

Buckner and Carroll, 2007; Raichle et al., 2001). It has also

been proposed that the complex symptoms of schizophrenia

could arise from an overactive or inappropriately active DMN

(Buckner et al., 2008). For example, within schizophrenia pa-

tients, increased DMNactivity during rest periods was correlated

with the positive symptoms of the disorder (e.g., hallucinations,

delusions, and thought confusions) (Garrity et al., 2007). In addi-

tion, another study reported that DMN regions were correlated

with each other to a significantly higher degree in schizophrenia

patients compared to controls (Zhou et al., 2007). Here we

demonstrated that offline activity in the hippocampus, one of

the DMN regions, is disrupted in calcineurin KO mice, thus

providing evidence for DMN dysfunction in an animal model of

schizophrenia.

Our finding that the basic physiological properties of place

cells are normal in KO, despite their displaying a range of spatial

learning impairments, reinforces the conclusion drawn in many

previous studies that place fields per semay not provide a robust

indicator of spatial learning and memory (McHugh et al., 2007;

Nakashiba et al., 2008; Suh et al., 2011). For instance, mice in

which the projection from the layer III principal cells of the medial

entorhinal cortex to hippocampal area CA1 was specifically

blocked by transgenic tetanus toxin displayed normal basic

properties of CA1 place fields including field size, mean firing

rate, and spatial information, and yet these mice exhibited im-

pairments in spatial working memory (Suh et al., 2011). By

contrast, the precise and complete blockade of CA3 input to

CA1 by transgenic tetanus toxin resulted in specific deficits

both in the SWR frequency and SWR-associated coreactivation

of CA1 cells during sleep, which correlate with a deficit in mem-

ory consolidation at the behavioral level (Nakashiba et al., 2009).

Likewise, disruption of neural activity during SWRs by electrical

microstimulation causes learning impairment (Ego-Stengel and
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Wilson, 2010; Girardeau et al., 2009). These and our present find-

ings add to the growing evidence that more complex aspects of

place cell activity, such as SWR-associated features, may be

necessary elements of hippocampal information processing for

learning and memory (Diba and Buzsáki, 2007; Foster and Wil-

son, 2006; Jadhav et al., 2012; Nakashiba et al., 2009; Pfeiffer

and Foster, 2013; Wilson and McNaughton, 1994). Therefore,

disruption of the temporal order of hippocampal place cell spikes

during SWRs in KO mice suggests a novel mechanism underly-

ing the cognitive impairments observed in schizophrenia.

The increase in SWR events provide a model that might unify

several disparate aspects of schizophrenia: (1) the role of NMDA

receptors in schizophrenia (the ‘‘glutamate hypothesis’’ [Olney

and Farber, 1995]), which is consistent with altered SWR abun-

dance resulting from an imbalance in NMDA-receptor depen-

dent synaptic plasticity mechanisms; (2) the cognitive symptoms

of schizophrenia, which may be accounted for by SWR-medi-

ated disruption of DMN function; (3) the presence of psychosis

and disordered thinking in schizophrenia, which may result

from abnormal memory reactivation in cortical areas caused by

abnormal memory reactivation in the hippocampus (Ji and Wil-

son, 2007); and (4) abnormalities in dopaminergic signaling (the

‘‘dopamine hypothesis’’ [Carlsson, 1977]), which may result

from the effect of increased SWR abundance on downstream

dopaminergic circuits (Lansink et al., 2009; Pennartz et al.,

2004). Therefore, our findings provide a novel link that SWR

activity may constitute a point of convergence across disparate

schizophrenia models and a new insight into the neural basis of

the cognitive disorder.

EXPERIMENTAL PROCEDURES

Mouse Breeding

To obtain the conditional knockout (KO) mice, we followed the breeding para-

digm published previously (Zeng et al., 2001). Briefly, female homozygous for

the floxed CNB (fCN) allele and carrying the aCaMKII-Cre transgene was

crossed to male homozygous fCN to produce KO and littermate fCN control

(CT). All mice were maintained in a pure C57BL/6 background and housed in

a room with a 12 hr light/dark cycle (light on at 7 am) with access to food

and water ad libitum. Tail DNA was collected to identify the genotypes of

animals using PCR. All procedures relating to animal care and treatment con-

formed to the institutional and NIH guidelines.

In Vivo Recording

Male mice (KO and CT) between 12–16 weeks of age were anesthetized i.p.

with avertin (300 mg/kg, 1.25% solution) and implanted with a microdrive

hosting six independently adjustable tetrodes. The tetrode tips were gold-

plated before surgery in order to reduce impedances to 200–250 kOhms.

The tetrodes were positioned above the right hippocampus (AP �1.8 mm,

ML 1.6 mm) to aim for dorsal CA1. The microdrive was secured to the skull

using watch screws and dental cement and a screw fixed to the skull

served as a ground electrode. The tetrodes were lowered over 10–

14 days in steps of 40 mm until ripple and the hippocampal units could

be identified. One designated electrode was targeted to the white matter

above hippocampus to record a reference signal. Recorded unit signals

were amplified 8 k to 20 k times and high-pass filtered above 6 kHz,

whereas EEG signals from the same tetrodes were amplified 5 k times

and band-pass filtered between 1 and 475 Hz. The animal’s position was

tracked with a 30 frames/s camera using a pair of infrared diodes attached

to the animal’s head. Hippocampal activity was recorded using a 16-chan-

nel Neuralynx recording system, (Neuralynx, Bozeman, MT) while mice were

in either a square enclosure (17 3 17 3 17 cm; ‘‘sleep box’’) or a linear
track (76 3 10 cm). The recording session consisted of one ‘‘RUN’’ epoch

on the track (40–60 min) bracketed by two ‘‘SLEEP’’ epochs (30–60 min) in

which the animal rested quietly in the sleep box in the same room.

Following the recording session, manual clustering of spikes was done

with XCLUST2 software (developed by M.A. Wilson, MIT). At the end of

the experiment, mice were given a lethal dose of avertin and an electric cur-

rent (50 mA) was delivered to create a small lesion at the tip of each

tetrode. Animals were then transcardially perfused with 4% paraformalde-

hyde in 1 3 phosphate-buffered saline and brains were removed, sliced

in 50 um with a Vibratome, and mounted on slides to verify the recording

positions. All experiments were conducted and analyzed by researchers

blind to the genotype of the individual animals.
Neural Data Analysis

Ripple Analysis

One electrode from each tetrode that had at least one cluster was considered

for EEG analysis. EEG signal of each electrode was denoised for 60 Hz electric

noise and its 180 Hz harmonic using a second-order IIR notch filter. Denoised

EEG was filtered at ripple frequency range (100–240 Hz) with a fifth-order But-

terworth band-pass filter. The envelopes of each band-passed EEG were ob-

tained using the absolute value of its Hilbert transform and these envelopes

were averaged over all electrodes. After applying a Gaussian smoother with

5 ms standard deviation, the averaged envelope was z-scored. Events that

passed 5 standard deviations (i.e., mean + 5 SD of averaged non-z-scored en-

velope) for more than 3 ms were considered as ripples, and ripples that were

less than 20 ms apart were merged and were considered as one extended rip-

ple. The beginning and end of each ripple were considered as where the

smoothed envelope crossed its mean value (i.e., zero for z-scored signal).

Ripples events that happened when mice were not immobilized were

excluded. Mice were considered as immobilized when their head speed was

below 0.5 cm/s. Ripple power was obtained by applying Welch’s method on

each individual non-z-scored nonenveloped ripple and then averaging over

calculated powers. Morlet wavelet scalogram with bandwidth of 10 was

used for spectrogram visualization of raw EEG. The same ripple-finding algo-

rithm was also applied for gamma frequency range (25–80 Hz), to investigate

whether the impairment in EEG power is only selective for ripple events or can

be found in gamma activity when animal is in immobilized state. Also, using

Welch’s method, the power of raw EEG signals during run was calculated

and, in particular, theta (4–12 Hz) powers for CT and KOmice were compared.

For a robustness analysis, EEGs were filtered with 50-Hz-wide frequency fil-

ters ranging from 50 Hz to 600 Hz with 40 Hz overlap between two consecutive

filters.

Cluster Analysis

Manual clustering of spikes was done based on spike waveform peak ampli-

tude using XCLUST2 software (M.A. Wilson, MIT). Putative interneurons

were also excluded from analysis on the basis of their spike width. To compare

the quality of clusters in mice genotypes amodified Lratio value for each cluster

of a tetrode was calculated (Pfeiffer and Foster, 2013; Schmitzer-Torbert et al.,

2005):

Lratio =

P
i;C

�
1� CDFc2

df

�
D2

i;C

��

ns

where i;C is the set of spikes that do not belong to target cluster C and Di,C is

theMahalanobis distance of these spikes from this cluster.CDFc2
df
is the cumu-

lative distribution function of c2 distribution with df = 4 (feature space for clus-

ters is four dimensional). ns is the total number of spikes from all the clusters

(including target cluster C) of the tetrode.

Place Cell Analysis

All the place cell analyses, except spatial coherence, were done on 1D place

fields. These 1D place fields were obtained by using 2 cm bins on linear track,

and these raw place fields were smoothed by applying a Gaussian smoother

with a 2.4 cm SD. Place field size was calculated as the number of 2-cm-

wide bins above 1 Hz threshold. Directionality index of each place field was

defined as the percentage of its dominant direction (the direction that a spe-

cific cell has higher peak firing) divided by the summation of both left and right
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firings. Sparsity index ranges from 0 to 1, where lower value means a less

diffuse and more spatially specific place field (Skaggs et al., 1996). Having

2 cm bins (n = 38) each having firing rate of fi and occupancy time of ti, we

would have:

Sparsity=

�Pn
i = 1

½pi,fi�
�2

P38
i =1

pi,f2i

where pi is the occupancy probability: pi = ti=
Pn

i =1ti. Spatial information, which

is the amount of information about an animal’s position by each spike of a

place cell, is calculated as follows (Markus et al., 1994):

Spatial Information=
Xn

i = 1

pi

fi
f
log2

fi
f

where f =
Pn

i =1pifi is the mean firing rate.

Spatial coherence, which quantifies smoothness and local orderliness of a

place field, is the autocorrelation of each 2D place field with its nearest

neighbor average (Muller and Kubie, 1989). To do this, 103 70 cm linear track

was binned to 23 2 cm bins and the new firing map for each pixel was calcu-

lated as the average firing rate of eight unsmoothed neighbor pixels. Then, 2D

correlation coefficient between original unsmoothed firing map and the new

one was calculated and to be statistically more meaningful this coefficient

became Fisher-transformed (z-transformed).

For visualization purpose, 2D place fields were calculated using 1 3 1 cm

bins smoothened with a 1 cm standard deviation Gaussian smoother.

Burst Analysis

For each place cell, spikes that happened in less than 10 ms apart during run

were considered as in-burst spikes. For each burst, amplitude difference was

defined as the average of the change in peak of new spike waveform in relation

to previous spike waveform. These calculated values were averaged over all

bursts and using ISI of in-burst spikes, each cell was able to be shown as

one point in a 2D (amplitude difference versus ISI) feature space.

Reactivation Analysis

For each ripple, spikes happening from 300 ms before it to 300 ms after it

were considered as ripple-associated spikes, and cells with at least one

spike in one ripple were called ‘‘active cells.’’ Only these ripple-associated

spikes were considered for calculation of pair-wise cross-correlogram. For

each pair of cells the histograms of these spikes were calculated in 5 ms

bins. Each histogram was smoothed with a five-sample moving-average

smoother. Then, cross-correlation of this pair of smoothed histograms was

calculated. Calculation was performed for all the cell pairs for each mouse

and averaged over the cell pairs that their place field peaks fall within

same 3-cm-binned distance. Then, these cross-correlograms were averaged

and normalized for all mice in different genotypes and shown only for visual-

ization purpose. However, for statistical analysis of reactivation, the average

of spike timing of each pair was calculated. Knowing the place field distance

of all pairs, each pair becomes a point in a 2D (spike separation versus place

field distance) coordinate space. Regression was used to fit these points,

and the amount of correlation and its statistical significance measured the

extent to which pairs of cells with spatially separated fields fired at longer

temporal separations during ripples, compared with pairs of cells with

spatially proximal fields. To further confirm this, pair cells with less than

10 cm distance between their place fields were considered as ‘‘close’’ cells

while cells with more than 40 cm distance were considered as ‘‘far’’ cells.

The average relative spike timing of these ‘‘close’’ and ‘‘far’’ cells was calcu-

lated for each genotype.

Furthermore, to directly compare pairs between CT and KO, a three-way

nested analysis of variance (ANOVA) was used that considered distance be-

tween pairs (‘‘far’’ versus ‘‘close’’) and genotypes (CT versus KO) as fixed-

effect factors, and mice as a random-effect factor nested in genotypes. To

investigate whether the mean of correlation coefficients across animals is

significantly different in CT versus KO, we used z-test. To be statistically com-

parable we applied a Fisher transform (or z-transform, z = arctanh(r)) on corre-

lation coefficients before calculating Z values.
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